Spark 实训1,RDD案例:词频统计
目录1.准备工作1.1启动spark集群2.1编辑并上传word.txt文件2.创建项目2.1创建项目2.2修改文件夹名2.3配置依赖配置文件pom.xml2.4在资源文件夹里创建日指数型文件 - log4j.properties3.创建词频统计单例对象3.1在net.luog.rdd包里创建WordCount单例对象3.2本地运行程序,查看结果4.将词频统计应用打包上传到虚拟机然后查看HDFS上
目录
2.4在资源文件夹里创建日指数型文件 - log4j.properties
3.1在net.luog.rdd包里创建WordCount单例对象
1.准备工作
1.1启动spark集群
2.1编辑并上传word.txt文件
2.创建项目
2.1创建项目
2.2修改文件夹名
2.3配置依赖配置文件pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion><groupId>net.luog.rdd</groupId>
<artifactId>SparkRDDWordCount</artifactId>
<version>1.0-SNAPSHOT</version><dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>2.12.15</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.12</artifactId>
<version>2.4.4</version>
</dependency>
</dependencies>
<build>
<sourceDirectory>src/main/scala</sourceDirectory>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>3.3.0</version>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.3.2</version>
<executions>
<execution>
<id>scala-compile-first</id>
<phase>process-resources</phase>
<goals>
<goal>add-source</goal>
<goal>compile</goal>
</goals>
</execution>
<execution>
<id>scala-test-compile</id>
<phase>process-test-resources</phase>
<goals>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
2.4在资源文件夹里创建日指数型文件 - log4j.properties
log4j.rootLogger=ERROR, stdout, logfile
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spark.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n
3.创建词频统计单例对象
3.1在net.luog.rdd
包里创建WordCount
单例对象
package net.luog.rdd
import org.apache.spark.{SparkConf, SparkContext}
/**
* 功能:利用RDD实现词频统计
*/
object WordCount {
def main(args: Array[String]): Unit = {
// 设置系统属性HADOOP_USER_NAME为root用户,否则对HDFS没有写权限
System.setProperty("HADOOP_USER_NAME", "root")
// 创建Spark配置对象
val conf = new SparkConf()
.setAppName("SparkRDDWordCount") // 设置应用名称
.setMaster("local[*]") // 设置主节点位置(目前本地调试)
// 基于Spark配置对象创建Spark容器
val sc = new SparkContext(conf);
// 判断命令行参数个数
var inputPath = "";
var outputPath = "";
if (args.length == 0) {
inputPath = "hdfs://master:9000/input/words.txt";
outputPath = "hdfs://master:9000/wc_result";
} else if (args.length == 1) {
inputPath = args(0); // 用户指定
outputPath = "hdfs://master:9000/wc_result";
} else if (args.length == 2) {
inputPath = args(0); // 用户指定
outputPath = args(1); // 用户指定
} else {
println("温馨提示:参数不能多于两个~")
inputPath = args(0); // 用户指定
outputPath = args(1); // 用户指定
}
// 进行词频统计
val wc = sc.textFile(inputPath) // 读取文件,得到RDD
.flatMap(_.split(" ")) // 扁平化映射,得到单词数组
.map((_, 1)) // 针对每个单词得到二元组(word, 1)
.reduceByKey(_ + _) // 按键进行聚合(key相同,value就累加)
.sortBy(_._2, false) // 按照单词个数降序排列
// 输出词频统计统计
wc.collect.foreach(println)
// 词频统计结果保存到指定位置
wc.saveAsTextFile(outputPath);
// 停止Spark容器,结束任务
sc.stop()
}
}
3.2本地运行程序,查看结果
然后查看HDFS上的结果文件
4.将词频统计应用打包上传到虚拟机
打包
在master
虚拟机上新建目录/app,并上传
删除HDFS上存放结果文件的目录/wc_result(否则会报错)
spark-submit --master spark://master:7077 --class net.luog.rdd.WordCount SparkRDDWordCount-1.0-SNAPSHOT.jar hdfs://master:9000/input/word.txt hdfs://master:9000/word_result
更多推荐
所有评论(0)