1. 虚拟机安装、克隆

使用VMware安装CentOS6.8详细教程

2. 网络配置

# 修改 hostname
hostname hadoop1

hostnamectl set-hostname hadoop1

# 最靠谱方式
Vim /etc/sysconfig/network

打开网卡:

centos 安装后默认是关闭网卡的,要进 /etc/sysconfig/network-scripts/ 下修改 ifcfg-ens33,将ONBOOT 的值改成 yesONBOOT是指明在系统启动时是否激活网卡,只有在激活状态的网卡才能连接网络,进行网络通信

修改完毕后,service network restart 重启网络,检查 ping baidu.com 是否能够通


克隆虚拟机修改 onboot 后重启网络失败

  • 错误类型:Bringing up interface eth0:Device eth0 does not seem to be present,delaying

  • 解决方法:删除 /etc/udev/rules.d/70-persistent-net.rules,然后将网卡配置文件 /etc/sysconfig/network-scripts/ifcfg-eth0uuidhwaddr 这两行删除,重启系统即可!

  • 参考:https://jingyan.baidu.com/article/e75aca85006645142edac6df.html

注意:有些没有 ifcfg-ens33,只有 ifcfg-eth0,修改 ifcfg-eth0 即可!

2.1 设置静态 IP、主机映射

设置静态 IP

以下操作每台服务器 hadoop1/2/3 都需要设置:

1、Vim /etc/sysconfig/network-scripts/ifcfg-ens33,有些可能会是 ifcfg-eth0

TYPE=Ethernet
PROXY_METHOD=none
BROWSER_ONLY=no
BOOTPROTO=static   	# 设置为 静态
DEFROUTE=yes
IPV4_FAILURE_FATAL=no
IPV6INIT=yes
IPV6_AUTOCONF=yes
IPV6_DEFROUTE=yes
IPV6_FAILURE_FATAL=no
IPV6_ADDR_GEN_MODE=stable-privacy
NAME=ens33
UUID=1c71c1dc-e4f8-4594-b77e-5e04f6906a31
DEVICE=ens33
ONBOOT=yes			# 必须为 yes
IPADDR=192.168.131.137	# 静态 IP	
GATEWAY=192.168.2.2		# 网关
NETMAK=255.255.255.0	# 子网掩码
DNS1=8.8.8.8
DNS2=114.114.114.114

2、每一台虚拟机配置 ip 和域名映射:

# vim /etc/hosts
192.168.131.137 hadoop1
192.168.131.138 hadoop2
192.168.131.139 hadoop3

3、关闭防火墙:

# 关闭防火墙
Service iptables stop 

# 禁止防火墙开机自启
Chkconfig iptables off

# 关闭selinux,设置 SELINUX 参数为 disabled
Vim /etc/selinux/config

4、重启网络、检查:

# 重启网络
service network restart

# hadoop1/2/3 三台服务器之间相互 ping 看是否能够通
ping hadoop1	

# 重启
reboot

2.2 添加hadoop账户并分配sudo权限

useradd -m hadoop
passwd hadoop

# 分配 sudo 权限,在该行root ALL=(ALL) ALL下添加hadoop ALL=(ALL) ALL保存后退出,并切换回hadoop用户
visudo

# 如下配置
## The COMMANDS section may have other options added to it.
##
## Allow root to run any commands anywhere
root    ALL=(ALL)       ALL
hadoop  ALL=(ALL)       ALL

# 切换用户
su hadoop

三台服务器IP、用户名、密码对应

# 分别有两个用户:root(110139)、hadoop(hadoop)
192.168.131.137 hadoop1
192.168.131.138 hadoop2
192.168.131.139 hadoop3

2.3 实现三台服务器之间免密登录

1、安装 ssh 服务:

yum install -y openssl openssh-server
yum -y install openssh-clients			# 一定要安装客户端,不然使用不了 ssh

# 用vim打开配置文件/etc/ssh/sshd_config
# 将 PermitRootLogin,RSAAuthentication,PubkeyAuthentication 的注释设置打开

# 常用命令
service sshd restart # 重启SSH服务
service sshd start # 启动服务
service sshd stop  # 停止服务
netstat -antp | grep sshd 	# 查看是否启动22端口

chkconfig sshd on		# 设置开机启动
chkconfig sshd off	# 设置禁止开机启动

yum install 时出现:

[root@hadoop3 .ssh]# yum install -y openssl openssh-server
Loaded plugins: fastestmirror
Setting up Install Process
Loading mirror speeds from cached hostfile
YumRepo Error: All mirror URLs are not using ftp, http[s] or file.
 Eg. Invalid release/repo/arch combination/
removing mirrorlist with no valid mirrors: /var/cache/yum/x86_64/6/base/mirrorlist.txt
Error: Cannot find a valid baseurl for repo: base

解决方法:

sed -i "s|enabled=1|enabled=0|g" /etc/yum/pluginconf.d/fastestmirror.conf
mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.backup
curl -o /etc/yum.repos.d/CentOS-Base.repo https://www.xmpan.com/Centos-6-Vault-Aliyun.repo 
    
yum clean all
yum makecache
yum repolist		# 查看当前源

参考:YumRepo Error: All mirror URLs are not using ftp, http[s] or file.centos6 yum失败!

2、生成公钥私钥(一定要在 hadoop 用户下执行!!!,否则后续 start-dfs.sh 没有权限

# 一路回车即可 路径:/home/hadoop/.ssh/id_rsa、id_rsa.pub
ssh-keygen -t rsa

# 在 hadoop1  服务器
cd /home/hadoop/.ssh/
cat id_rsa.pub > authorized_keys

# 再将 Hadoop2、Hadoop3 的 id_rsa.pub 的内容拷贝到 Hadoop1 的 authorized_keys,最后将 authorized_keys 分别传到 Hadoop2、Hadoop3 的 /home/hadoop/.ssh/
scp authorized_keys root@hadoop2:/home/hadoop/.ssh/
scp authorized_keys root@hadoop3:/home/hadoop/.ssh/
    
# 分别给三个节点 修改authorized_keys权限
chmod 600 authorized_keys
chmod 700 .ssh

# 测试,ssh + 主机名
ssh hadoop2
# hbase 集群
https://www.cnblogs.com/qingyunzong/p/8668880.html

# hadoop 集群
https://www.cnblogs.com/qingyunzong/p/8496127.html

3. jdk 安装

1、如果你使用root用户进行安装。 vi /etc/profile 即可 系统变量

2、如果你使用普通用户进行安装。 vi ~/.bashrc 用户变量

# .bashrc

# Source global definitions
if [ -f /etc/bashrc ]; then
	. /etc/bashrc
fi

# User specific aliases and functions
export JAVA_HOME=/home/hadoop/apps/jdk1.8.0_261
export PATH=$JAVA_HOME/bin:$PATH

检查:

[hadoop@hadoop3 apps]$ source ~/.bashrc
[hadoop@hadoop3 apps]$ echo $JAVA_HOME
/home/hadoop/apps/jdk1.8.0_261
[hadoop@hadoop3 apps]$ java -version
java version "1.8.0_261"
Java(TM) SE Runtime Environment (build 1.8.0_261-b12)
Java HotSpot(TM) 64-Bit Server VM (build 25.261-b12, mixed mode)

4. hadoop 安装

集群规划:

服务/主机名IP用户HDFSYARN
hadoop1192.168.131.137hadoopNameNode,DataNodeNodeManager,ResourceManager
hadoop2192.168.131.138hadoopDataNodeNodeManager
hadoop3192.168.131.139hadoopDataNodeNodeManager
服务主节点从节点
HDFSNameNodeDataNode
YARNResourceManagerNodeManager

注意:hadoop 用户最好给 apps、data、hadoop-2.7.5/ 等都添加权限 sudo chown hadoop:hadoop apps/

1、解压:

[hadoop@hadoop1 apps]$ tar -zxvf hadoop-2.7.5.tar.gz

2、hadoop-env.sh

配置文件目录:/home/hadoop/apps/hadoop-2.7.5/etc/hadoop

cd /home/hadoop/apps/hadoop-2.7.5/etc/hadoop
vim hadoop-env.sh

# 只需修改 jdk 路径
export JAVA_HOME=/usr/local/jdk1.8.0_73

3、core-site.xml

<configuration>
        <property>
                <name>fs.defaultFS</name>
                <value>hdfs://hadoop1:9000</value>
        </property>
        <property>
                <name>hadoop.tmp.dir</name>
                <value>/home/hadoop/data/hadoopdata</value>
        </property>
</configuration>

4、hdfs-site.xml

<configuration>
        <property>
                <name>dfs.namenode.name.dir</name>
                <value>/home/hadoop/data/hadoopdata/name</value>
                <description>为了保证元数据的安全一般配置多个不同目录</description>
        </property>

        <property>
                <name>dfs.datanode.data.dir</name>
                <value>/home/hadoop/data/hadoopdata/data</value>
                <description>datanode 的数据存储目录</description>
        </property>

        <property>
                <name>dfs.replication</name>
                <value>2</value>
                <description>HDFS 的数据块的副本存储个数, 默认是3</description>
        </property>

        <property>
                <name>dfs.secondary.http.address</name>
                <value>hadoop3:50090</value>
                <description>secondarynamenode 运行节点的信息,和 namenode 不同节点</description>
        </property>
</configuration>

5、mapred-site.xml

<configuration>
        <property>
                <name>mapreduce.framework.name</name>
                <value>yarn</value>
        </property>
</configuration>

6、yarn-site.xml

<configuration>

<!-- Site specific YARN configuration properties -->

        <property>
                <name>yarn.resourcemanager.hostname</name>
                <value>hadoop1</value>			// 这个必须与 resourcemanager 服务器一致,我这里是 hadoop1
        </property>
        
        <property>
                <name>yarn.nodemanager.aux-services</name>
                <value>mapreduce_shuffle</value>
                <description>YARN 集群为 MapReduce 程序提供的 shuffle 服务</description>
        </property>

</configuration>

7、slaves

vim slaves 

hadoop1
hadoop2
hadoop3

8、将 hadoop-2.7.5/ 分发到其他集群:

scp -r hadoop-2.7.5/ hadoop2:/home/hadoop/apps
scp -r hadoop-2.7.5/ hadoop3:/home/hadoop/apps

9、添加环境变量(每台服务器都需要添加):

[hadoop@hadoop1 apps]$ vim ~/.bashrc 
export HADOOP_HOME=/home/hadoop/apps/hadoop-2.7.5
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:
            
[hadoop@hadoop1 apps]$ source ~/.bashrc 
[hadoop@hadoop1 apps]$ hadoop version
Hadoop 2.7.5
Subversion https://shv@git-wip-us.apache.org/repos/asf/hadoop.git -r 18065c2b6806ed4aa6a3187d77cbe21bb3dba075
Compiled by kshvachk on 2017-12-16T01:06Z
Compiled with protoc 2.5.0
From source with checksum 9f118f95f47043332d51891e37f736e9
This command was run using /home/hadoop/apps/hadoop-2.7.5/share/hadoop/common/hadoop-common-2.7.5.jar

10、格式化:

[hadoop@hadoop1 bin]$ hadoop namenode -format

21/06/13 14:34:26 INFO util.GSet: Computing capacity for map NameNodeRetryCache
21/06/13 14:34:26 INFO util.GSet: VM type       = 64-bit
21/06/13 14:34:26 INFO util.GSet: 0.029999999329447746% max memory 966.7 MB = 297.0 KB
21/06/13 14:34:26 INFO util.GSet: capacity      = 2^15 = 32768 entries
21/06/13 14:34:27 INFO namenode.FSImage: Allocated new BlockPoolId: BP-57205935-192.168.131.137-1623566067094
21/06/13 14:34:27 INFO common.Storage: Storage directory /home/hadoop/data/hadoopdata/name has been successfully formatted.
21/06/13 14:34:27 INFO namenode.FSImageFormatProtobuf: Saving image file /home/hadoop/data/hadoopdata/name/current/fsimage.ckpt_0000000000000000000 using no compression
21/06/13 14:34:27 INFO namenode.FSImageFormatProtobuf: Image file /home/hadoop/data/hadoopdata/name/current/fsimage.ckpt_0000000000000000000 of size 322 bytes saved in 0 seconds.
21/06/13 14:34:28 INFO namenode.NNStorageRetentionManager: Going to retain 1 images with txid >= 0
21/06/13 14:34:28 INFO util.ExitUtil: Exiting with status 0
21/06/13 14:34:28 INFO namenode.NameNode: SHUTDOWN_MSG: 
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode at hadoop1/192.168.131.137
************************************************************/

格式化 Namenode 时不能创建目录

java.io.IOException: Cannot create directory /home/hadoop/data/hadoopdata/na
    
# 解决方法
https://blog.csdn.net/qq_40414738/article/details/99544777

start-dfs.sh 时没有权限

[hadoop@hadoop1 sbin]$ sudo start-dfs.sh
[sudo] password for hadoop: 
sudo: start-dfs.sh: command not found
[hadoop@hadoop1 sbin]$ start-dfs.sh
Starting namenodes on [hadoop1]
hadoop@hadoop1's password: 
hadoop1: namenode running as process 4090. Stop it first.
hadoop@hadoop2's password: hadoop@hadoop1's password: hadoop@hadoop3's password: 
hadoop2: mkdir: cannot create directory `/home/hadoop/apps/hadoop-2.7.5/logs': Permission denied
hadoop2: chown: cannot access `/home/hadoop/apps/hadoop-2.7.5/logs': No such file or directory
hadoop2: starting datanode, logging to /home/hadoop/apps/hadoop-2.7.5/logs/hadoop-hadoop-datanode-hadoop2.out
hadoop2: /home/hadoop/apps/hadoop-2.7.5/sbin/hadoop-daemon.sh: line 159: /home/hadoop/apps/hadoop-2.7.5/logs/hadoop-hadoop-datanode-hadoop2.out: No such file or directory
hadoop2: head: cannot open `/home/hadoop/apps/hadoop-2.7.5/logs/hadoop-hadoop-datanode-hadoop2.out' for reading: No such file or directory
hadoop2: /home/hadoop/apps/hadoop-2.7.5/sbin/hadoop-daemon.sh: line 177: /home/hadoop/apps/hadoop-2.7.5/logs/hadoop-hadoop-datanode-hadoop2.out: No such file or directory
hadoop2: /home/hadoop/apps/hadoop-2.7.5/sbin/hadoop-daemon.sh: line 178: /home/hadoop/apps/hadoop-2.7.5/logs/hadoop-hadoop-datanode-hadoop2.out: No such file or directory

解决办法:https://www.cnblogs.com/zknublx/p/8066693.html

开启 hdfs

[hadoop@hadoop1 sbin]$ start-dfs.sh 
Starting namenodes on [hadoop1]
hadoop1: starting namenode, logging to /home/hadoop/apps/hadoop-2.7.5/logs/hadoop-hadoop-namenode-hadoop1.out
hadoop3: starting datanode, logging to /home/hadoop/apps/hadoop-2.7.5/logs/hadoop-hadoop-datanode-hadoop3.out
hadoop2: starting datanode, logging to /home/hadoop/apps/hadoop-2.7.5/logs/hadoop-hadoop-datanode-hadoop2.out
hadoop1: datanode running as process 4822. Stop it first.
Starting secondary namenodes [hadoop3]
hadoop3: starting secondarynamenode, logging to /home/hadoop/apps/hadoop-2.7.5/logs/hadoop-hadoop-secondarynamenode-hadoop3.out
[hadoop@hadoop1 sbin]$ jps
4822 DataNode
5465 NameNode
5724 Jps

开启 yarn

[hadoop@hadoop1 sbin]$ start-yarn.sh
starting yarn daemons
starting resourcemanager, logging to /home/hadoop/apps/hadoop-2.7.5/logs/yarn-hadoop-resourcemanager-hadoop1.out
hadoop3: starting nodemanager, logging to /home/hadoop/apps/hadoop-2.7.5/logs/yarn-hadoop-nodemanager-hadoop3.out
hadoop2: starting nodemanager, logging to /home/hadoop/apps/hadoop-2.7.5/logs/yarn-hadoop-nodemanager-hadoop2.out
hadoop1: starting nodemanager, logging to /home/hadoop/apps/hadoop-2.7.5/logs/yarn-hadoop-nodemanager-hadoop1.out

查看集群 jps 进程

[hadoop@hadoop1 sbin]$ jps
5891 Jps
4822 DataNode
5465 NameNode
5770 ResourceManager
5870 NodeManager

[hadoop@hadoop2 ~]$ jps
2643 NodeManager
2532 DataNode
2717 Jps

[hadoop@hadoop3 ~]$ jps
2816 DataNode
2994 NodeManager
3091 Jps

web 管理界面

  • HDFS : http://192.168.131.137:50070
  • YARN : http://192.168.131.137:8088/cluster
https://www.cnblogs.com/qingyunzong/p/8496127.html
https://www.cnblogs.com/qingyunzong/p/8668880.html
https://blog.csdn.net/Beans___Lee/article/details/105265244
https://blog.csdn.net/qq_43106863/article/details/101530233
https://blog.csdn.net/ASN_forever/article/details/80701003
https://blog.csdn.net/weixin_41552767/article/details/107221454
https://segmentfault.com/a/1190000038229319
VMware 搭建 hadoop 完全分布式集群

5. zookeeper 集群安装

这里规划三台服务器:hadoop1,hadoop2,hadoop3

下载地址:http://mirrors.hust.edu.cn/apache/ZooKeeper/

此处使用的是3.4.10版本

1、解压:

[hadoop@hadoop1 ~]$ cd /home/hadoop/apps
[hadoop@hadoop1 ~]$ tar -zxvf zookeeper-3.4.10.tar.gz -C apps/

2、修改配置文件:

[hadoop@hadoop1 zookeeper-3.4.10]$ cd conf/
[hadoop@hadoop1 conf]$ mv zoo_sample.cfg zoo.cfg
[hadoop@hadoop1 conf]$ vim zoo.cfg 

# dataDir  内存数据库快照存放地址
dataDir=/home/hadoop/data/zkdata/

# 末尾添加,配置ZK监听客户端连接的端口
dataLogDir=/home/hadoop/log/zklog		# 事务日志

server.1=hadoop1:2888:3888
server.2=hadoop2:2888:3888
server.3=hadoop3:2888:3888
        
# server.serverid=host:tickpot:electionport   
# server:固定写法
# serverid:每个服务器的指定ID(必须处于1-255之间,必须每一台机器不能重复)
# host:主机名
# tickpot:心跳通信端口
# electionport:选举端口

3、将配置文件分发到集群其他机器中:

[hadoop@hadoop1 bin]$ scp -r zookeeper-3.4.10/ hadoop2:/home/hadoop/apps
[hadoop@hadoop1 bin]$ scp -r zookeeper-3.4.10/ hadoop3:/home/hadoop/apps

注意:以下操作 4、5、6 每台服务器都需要这样操作!

4、创建日志目录、配置服务器 ID:

[hadoop@hadoop1 bin]$ mkdir -p /home/hadoop/log
[hadoop@hadoop1 bin]$ sudo chown hadoop:hadoop log/			# 给 hadoop 用户添加权限
[hadoop@hadoop1 bin]$ mkdir -p /home/hadoop/data/zkdata		
[hadoop@hadoop1 ~]$ cd /home/hadoop/data/zkdata
[hadoop@hadoop1 ~]$ echo 1 > myid		# myid,里面存放的内容就是服务器的 id,就是 server.1=hadoop01:2888:3888 当中的 id, 就是 1

5、配置环境变量:

vim ~/.bashrc

export ZOOKEEPER_HOME=/home/hadoop/apps/zookeeper-3.4.10
export PATH=$PATH:$ZOOKEEPER_HOME/bin

source ~/.bashrc

6、启动 zkserver 服务,检查:

启动:zkServer.sh start
停止:zkServer.sh stop
查看状态:zkServer.sh status

ps -aux | grep 'zookeeper' 
[hadoop@hadoop1 bin]$ zkServer.sh start
ZooKeeper JMX enabled by default
Using config: /home/hadoop/apps/zookeeper-3.4.10/bin/../conf/zoo.cfg
Starting zookeeper ... STARTED
[hadoop@hadoop1 bin]$ zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /home/hadoop/apps/zookeeper-3.4.10/bin/../conf/zoo.cfg
Error contacting service. It is probably not running.
[hadoop@hadoop1 bin]$ jps
2769 Jps
2723 QuorumPeerMain

[hadoop@hadoop2 bin]$ zkServer.sh start
ZooKeeper JMX enabled by default
Using config: /home/hadoop/apps/zookeeper-3.4.10/bin/../conf/zoo.cfg
Starting zookeeper ... STARTED
[hadoop@hadoop2 bin]$ zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /home/hadoop/apps/zookeeper-3.4.10/bin/../conf/zoo.cfg
Mode: leader
[hadoop@hadoop2 bin]$ jps

[hadoop@hadoop3 bin]$ zkServer.sh start
ZooKeeper JMX enabled by default
Using config: /home/hadoop/apps/zookeeper-3.4.10/bin/../conf/zoo.cfg
Starting zookeeper ... STARTED
[hadoop@hadoop3 bin]$ zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /home/hadoop/apps/zookeeper-3.4.10/bin/../conf/zoo.cfg
Mode: follower
[hadoop@hadoop3 bin]$ jps
1898 QuorumPeerMain
1951 Jps

参考:https://www.cnblogs.com/qingyunzong/p/8619184.html

6. HBase 集群搭建

[hadoop@hadoop1 apps]$ tar -zxvf hbase-1.2.6-bin.tar.gz
[hadoop@hadoop1 apps]$ cd hbase-1.2.6/conf/				# 配置文件目录

[hadoop@hadoop1 conf]$ vim hbase-env.sh 

# 修改 jdk 路径 和 zookeeper 
export JAVA_HOME=/home/hadoop/apps/jdk1.8.0_261

# Tell HBase whether it should manage it's own instance of Zookeeper or not.
export HBASE_MANAGES_ZK=false

1、修改 hbase-site.xml

<configuration>
        <property>
                <!-- 指定 hbase 在 HDFS 上存储的路径 -->
                <name>hbase.rootdir</name>
                <value>hdfs://hadoop1:9000/hbase</value>
        </property>
        <property>
                <!-- 指定 hbase 是分布式的 -->
                <name>hbase.cluster.distributed</name>
                <value>true</value>
        </property>
        <property>
                <!-- 指定 zk 的地址,多个用“,”分割 -->
                <name>hbase.zookeeper.quorum</name>
                <value>hadoop1:2181,hadoop2:2181,hadoop3:2181</value>
        </property>
        <property>
            <name>hbase.master.maxclockskew</name>
            <value>180000</value>
            <description>Time difference of regionserver from master</description>
       </property>
</configuration>

2、修改 regionservers

vim regionservers

hadoop1
hadoop2
hadoop3

3、修改 backup-masters(该文件是不存在的,先自行创建):

# 备用 master
vim backup-masters

hadoop3

4、要把 hadoop 的 hdfs-site.xml 和 core-site.xml 放到 hbase-1.2.6/conf 下

5、删除 docs(删除 HBase 目录下的 docs 文件夹):

rm -rf docs

# 分发
scp -r hbase-1.2.6/ hadoop2:/home/hadoop/apps/
scp -r hbase-1.2.6/ hadoop3:/home/hadoop/apps/

6、时间同步:

HBase 集群对于时间的同步要求的比 HDFS 严格,所以,集群启动之前千万记住要进行 时间同步,要求相差不要超过 30s:

方法一:

# 配置 hbase-site.xml,三个服务器之间时间差不超过 30s

<property>
    <name>hbase.master.maxclockskew</name>
    <value>180000</value>
    <description>Time difference of regionserver from master</description>
</property>

方法二:

  • 从节点服务器与主节点服务器时间同步
  • 所有节点与网络服务器时间同步
[hadoop@hadoop2 hbase-1.2.6]$ sudo yum install -y ntp

# 与 time.nist.gov 网络服务器同步
[hadoop@hadoop2 hbase-1.2.6]$ sudo /usr/sbin/ntpdate time.nist.gov
15 Jun 20:54:27 ntpdate[1780]: step time server 132.163.97.3 offset -28785.531070 sec
            
# 设置定时任务
[hadoop@hadoop2 hbase-1.2.6]$ crontab -l
# 服务器时间同步
0 */1 * * *  /usr/sbin/ntpdate time.nist.gov

参考:http://www.hnbian.cn/posts/f2bc4737.html

7、系统环境变量:

# 所有节点都需要修改
[hadoop@hadoop1 bin]$ vim ~/.bashrc

export HBASE_HOME=/home/hadoop/apps/hbase-1.2.6
export PATH=$PATH:$HBASE_HOME/bin
    
source ~/.bashrc 

8、启动 hbase 集群:

[hadoop@hadoop1 bin]$ pwd
/home/hadoop/apps/hbase-1.2.6/bin
[hadoop@hadoop1 bin]$ start-hbase.sh
starting master, logging to /home/hadoop/apps/hbase-1.2.6/logs/hbase-hadoop-master-hadoop1.out
Java HotSpot(TM) 64-Bit Server VM warning: ignoring option PermSize=128m; support was removed in 8.0
Java HotSpot(TM) 64-Bit Server VM warning: ignoring option MaxPermSize=128m; support was removed in 8.0
hadoop3: starting regionserver, logging to /home/hadoop/apps/hbase-1.2.6/logs/hbase-hadoop-regionserver-hadoop3.out
hadoop2: starting regionserver, logging to /home/hadoop/apps/hbase-1.2.6/logs/hbase-hadoop-regionserver-hadoop2.out
hadoop1: starting regionserver, logging to /home/hadoop/apps/hbase-1.2.6/logs/hbase-hadoop-regionserver-hadoop1.out
hadoop3: starting master, logging to /home/hadoop/apps/hbase-1.2.6/logs/hbase-hadoop-master-hadoop3.out

注意:在哪个集群启动,哪个就是主节点 Master,启动 hbase 之前一定先启动 zookeeper、hadoop!!!

9、检查:

[hadoop@hadoop1 bin]$ jps
1668 NameNode
2164 NodeManager
4054 Jps
3590 HMaster
1495 QuorumPeerMain
3719 HRegionServer
1768 DataNode
2061 ResourceManager

[hadoop@hadoop2 hbase-1.2.6]$ jps
1440 QuorumPeerMain
2305 Jps
2149 HRegionServer
1622 NodeManager
1511 DataNode

[hadoop@hadoop3 bin]$ jps
2722 Jps
1682 NodeManager
1436 QuorumPeerMain
1501 DataNode
2654 HRegionServer

若有节点 HRegionServer 进程没起来就手动启动

# 启动 master 进程 
hbase-daemon.sh start master

# 启动HRegionServer进程
hbase-daemon.sh start regionserver 

10、web-ui

http://192.168.131.137:16010/

11、测试:

[hadoop@hadoop1 bin]$ hbase shell
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/home/hadoop/apps/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/home/hadoop/apps/hadoop-2.7.5/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
HBase Shell; enter 'help<RETURN>' for list of supported commands.
Type "exit<RETURN>" to leave the HBase Shell
Version 1.2.6, rUnknown, Mon May 29 02:25:32 CDT 2017

hbase(main):001:0> list
TABLE                                                                                                               
0 row(s) in 0.6420 seconds

=> []
hbase(main):002:0> helo 'list'
NoMethodError: undefined method `helo' for #<Object:0x3ab35b9c>


hbase(main):004:0> create 't1', {NAME => 'f1'}, {NAME => 'f2'}, {NAME => 'f3'}
0 row(s) in 1.6840 seconds

=> Hbase::Table - t1
hbase(main):005:0> list
TABLE                                                                                                               
t1                                                                                                                  
1 row(s) in 0.0290 seconds

=> ["t1"]
hbase(main):006:0> desc 't1'
Table t1 is ENABLED                                                                                                 
t1                                                                                                                  
COLUMN FAMILIES DESCRIPTION                                                                                         
{NAME => 'f1', BLOOMFILTER => 'ROW', VERSIONS => '1', IN_MEMORY => 'false', KEEP_DELETED_CELLS => 'FALSE', DATA_BLOC
K_ENCODING => 'NONE', TTL => 'FOREVER', COMPRESSION => 'NONE', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE 
=> '65536', REPLICATION_SCOPE => '0'}                                                                               
{NAME => 'f2', BLOOMFILTER => 'ROW', VERSIONS => '1', IN_MEMORY => 'false', KEEP_DELETED_CELLS => 'FALSE', DATA_BLOC
K_ENCODING => 'NONE', TTL => 'FOREVER', COMPRESSION => 'NONE', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE 
=> '65536', REPLICATION_SCOPE => '0'}                                                                               
{NAME => 'f3', BLOOMFILTER => 'ROW', VERSIONS => '1', IN_MEMORY => 'false', KEEP_DELETED_CELLS => 'FALSE', DATA_BLOC
K_ENCODING => 'NONE', TTL => 'FOREVER', COMPRESSION => 'NONE', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE 
=> '65536', REPLICATION_SCOPE => '0'}                                                                               
3 row(s) in 0.3510 seconds

参考文章:

  • https://www.cnblogs.com/clsn/p/10300487.html#63-%E5%90%AF%E5%8A%A8hbase%E9%9B%86%E7%BE%A4

  • https://www.cnblogs.com/qingyunzong/p/8668880.html#_label2_0

  • https://blog.csdn.net/u011066470/article/details/106305238

  • https://www.cnblogs.com/ityouknow/p/7343996.html

Logo

华为开发者空间,是为全球开发者打造的专属开发空间,汇聚了华为优质开发资源及工具,致力于让每一位开发者拥有一台云主机,基于华为根生态开发、创新。

更多推荐