k8s部署prometheus监控详解+钉钉报警+邮件报警
Prometheus(普罗米修斯)是一个最初在SoundCloud上构建的监控系统。自2012年成为社区开源项目,拥有非常活跃的开发人员和用户社区。为强调开源及独立维护。Prometheus于2016年加入云原生云计算基金会(CNCF),成为继Kubernetes之后的第二个托管项目。3.1.2、数据模型Prometheus将所有数据存储为时间序列;具有相同度量名称(指标)以及标签属于同一个时间序
三、Prometheus详解
3.1、Prometheus简介
Prometheus(普罗米修斯)是一个最初在SoundCloud上构建的监控系统。自2012年成为社区开源项目,拥有非常活跃的开发人员和用户社区。为强调开源及独立维护。Prometheus于2016年加入云原生云计算基金会(CNCF),成为继Kubernetes之后的第二个托管项目。
- 官方网站:https://prometheus.io
- 项目托管:https://github.com/prometheu
3.1.1、特点及组件
特点
作为新一代的监控框架,Prometheus 具有以下特点:
1、多维数据模型:由度量名称和键值对标识的时间序列数据
2、PromSQL:一种灵活的查询语言,可以利用多维数据完成复杂的查询
3、不依赖分布式存储,单个服务器节点可直接工作
4、基于HTTP的pull方式采集时间序列数据
5、推送时间序列数据通过PushGateway组件支持
6、通过服务发现或静态配置发现目标
7、多种图形模式及仪表盘支持(grafana)
8、适用于以机器为中心的监控以及高度动态面向服务架构的监控
生态组件
##Prometheus 由多个组件组成,但是其中许多组件是可选的:
Prometheus_Server:用于收集指标和存储时间序列数据,并提供查询接口
nodeexport:客户端库,为需要监控的服务产生相应的/metrics并暴露给Prometheus_Server。
pushgateway:主要用于临时性的 jobs。Jobs定时将指标push到pushgateway,再由Prometheus_Server从Pushgateway上pull。
alertmanager:从 Prometheus_server 端接收到 alerts 后,会进行去除重复数据,分组,并路由到对收的接受方式,发出报警。
Web_UI:图形化展示,查看指标或者创建仪表盘通常使用Grafana,Prometheus作为Grafana的数据源;
#注:大多数 Prometheus 组件都是用 Go 编写的,因此很容易构建和部署为静态的二进制文件。
prometheus能监控什么
数据库:mysql,redis,ElasticSearch,MongoDB,PostgreSQL,Oracle
硬件:服务器设备,网络设备
消息服务:rabbitmq,kafka,
Storage-存储:ceph,Gluster,Hadoop
网站:Apache,nginx
监控k8s:提供5种服务发现node,pod,service,endpoint,ingress
3.1.2、数据模型
Prometheus将所有数据存储为时间序列;具有相同度量名称(指标)以及标签属于同一个时间序列数据
每个时间序列都由度量标准名称和一组键值对(也称为标签)唯一标识
时间序列格式:
<metric name>{<label name>=<label value>, ...}
示例:
api_http_requests_total{method="POST", handler="/messages"}
度量名称(指标) {标签名=值 }值
3.1.3、指标类型
Counter
## Counter:递增的计数器
适合:API 接口请求次数,重试次数。只增不减
例如:http_response_total{method="GET",endpoint="/api/tracks"} 100
http_response_total{method="GET",endpoint="/api/tracks"} 160
通过 rate()函数获取 HTTP 请求量的增长率:rate(http_requests_total[5m])
Gauge
## Gauge:可以任意变化的数值
适合:获取样本在一段时间内的变化情况,类似波浪线不均匀。
例如,计算 CPU 温度在两小时内的差异: dalta(cpu_temp_celsius{host="zeus"}[2h])
Histogram
## Histogram:对一段时间范围内数据进行采样,并对所有数值求和与统计数量、柱状图
1、在一段时间范围内对数据进行采样(通常是请求持续时间或响应大小等),并将其计入可配置的存储桶(bucket)中. 后续可通过指定区间筛选样本,也可以统计样本总数,最后一般将数据展示为直方图。
2、对每个采样点值累计和(sum)
3、对采样点的次数累计和(count)
## 度量指标名称: [basename]_上面三类的作用度量指标名称
1、[basename]_bucket{le="上边界"}, 这个值为小于等于上边界的所有采样点数量
2、[basename]_sum
3、[basename]_count
## 例如
在总共 2 次请求当中。http 请求响应时间 <=0.005 秒 的请求次数为 0
io_namespace_http_requests_latency_seconds_histogram_bucket{path="/",method="GET",code="200",le="0.005",} 0.0
请求总的响应时间为 13.107670803000001 秒 io_namespace_http_requests_latency_seconds_histogram_sum{path="/",method="GET",code="200",} 13.107670803000001
请求次数
io_namespace_http_requests_latency_seconds_histogram_count{path="/",method="GET",code="
200",} 2.0
#Summary:与Histogram类似
3.2、prometheus监控
3.2.1、能监控什么
• Databases
• Hardware related
• Messaging systems
• Storage
• HTTP
• APIs
• Logging
• Other monitoring systems
• Miscellaneous
• Software exposing Prometheus metrics
Databases 数据库
• ElasticSearch exporter
• Memcached exporter (official)
• MongoDB exporter
• MSSQL server exporter
• Oracle DB Exporter
• PostgreSQL exporter
• Redis exporter
• SQL exporter
Hardware 硬件
• apcupsd exporter
• Collins exporter
• IBM Z HMC exporter
• IoT Edison exporter
• IPMI exporter
• knxd exporter
• Netgear Cable Modem Exporter
• Node/system metrics exporter (official)
Messaging 消息服务
• Kafka exporter
• RabbitMQ exporter
storage 存储
• Ceph exporter
• Gluster exporter
• Hadoop HDFS FSImage exporter
http 网站
• Apache exporter
• HAProxy exporter (official)
• Nginx metric library
• Nginx VTS exporter
• Passenger exporter
• Squid exporter
kubernetes 监控
## 对于k8s监控资源可以分为5类
Node:集群节点
Container:为应用提供运行时环境
Pod:Pod 中会包含一组容器
Service:四层代理,通过 Service 在集群暴露应用功能,集群内应用和应用之间访问时提供内部的负载均衡
Ingress:七层代理,通过 Ingress 提供集群外的访问入口
## 因此一个完整得监控体系如下:
集群节点状态监控:从集群中各节点的 kubelet 服务获取节点的基本运行状态
集群节点资源用量监控:通过 Daemonset 的形式在集群中各个节点部署 Node Exporter采集节点的资源
节点中运行的容器监控:通过各个节点中 kubelet 内置的 cAdvisor 中获取个节点中所有容器的运行状态和资源使用情况
如果在集群中部署的应用程序本身内置了对 Prometheus 的监控支持,那么我们还应该找到相应的 Pod 实例,并从该 Pod 监控指
k8s组件监控:apiserver、scheduler、controller-manager、kubelet、kube-proxy
3.2.2、安装node-exporter
node-exporter简介
node-exporter 可以采集机器(物理机、虚拟机、云主机等)的监控指标数据,能够采集到的指标包括 CPU, 内存,磁盘,网络,文件数等信息。
node-exporter.yaml文件
## 通过daemonset部署
vim node-export.yaml
---
apiVersion: v1
kind: Namespace
metadata:
name: monitor-sa
labels:
name: node-exporter
---
apiVersion: apps/v1
kind: DaemonSet
metadata:
name: node-exporter
namespace: monitor-sa
labels:
name: node-exporter
spec:
selector:
matchLabels:
name: node-exporter
template:
metadata:
labels:
name: node-exporter
spec:
#hostNetwork、hostIPC、hostPID 都为 True 时,表示这个 Pod 里的所有容器,会直接使用宿主机的网络,直接与宿主机进行 IPC(进程间通信)通信,可以看到宿主机里正在运行的所有进程。加入了 hostNetwork:true 会直接将我们的宿主机的 9100 端口映射出来,从而不需要创建 service 在我们的宿主机上就会有一个 9100 的端口
hostPID: true
hostIPC: true
hostNetwork: true
containers:
- name: node-exporter
image: prom/node-exporter
ports:
- containerPort: 9100
resources:
requests:
cpu: 0.15
securityContext:
privileged: true #开启特权模式
args:
- --path.procfs
- /host/proc
- --path.sysfs
- /host/sys
- --collector.filesystem.ignored-mount-points
- '"^/(sys|proc|dev|host|etc)($|/)"'
#将主机/dev、/proc、/sys 这些目录挂在到容器中,这是因为我们采集的很多节点数据都是通过这些文件来获取系统信息的。
volumeMounts:
- name: dev
mountPath: /host/dev
- name: proc
mountPath: /host/proc
- name: sys
mountPath: /host/sys
- name: rootfs
mountPath: /rootfs
tolerations:
- key: "node-role.kubernetes.io/master"
operator: "Exists"
effect: "NoSchedule"
volumes:
- name: proc
hostPath:
path: /proc
- name: dev
hostPath:
path: /dev
- name: sys
hostPath:
path: /sys
- name: rootfs
hostPath:
path: /
## 创建node-exporter
kubectl apply -f node-export.yaml
## 通过node-exporter采集数据,查看所有监控指标
curl http://主机 ip:9100/metrics
## 查看某个节点cpu使用情况
[root@master01 prometheus]# curl http://192.168.163.130:9100/metrics | grep node_cpu_seconds
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0# HELP node_cpu_seconds_total Seconds the CPUs spent in each mode.
# TYPE node_cpu_seconds_total counter 数据类型counter
node_cpu_seconds_total{cpu="0",mode="idle"} 1176.59
node_cpu_seconds_total{cpu="0",mode="iowait"} 3.57
node_cpu_seconds_total{cpu="0",mode="irq"} 0
node_cpu_seconds_total{cpu="0",mode="nice"} 0
node_cpu_seconds_total{cpu="0",mode="softirq"} 7.45
node_cpu_seconds_total{cpu="0",mode="steal"} 0
node_cpu_seconds_total{cpu="0",mode="system"} 83.22
node_cpu_seconds_total{cpu="0",mode="user"} 67.72
node_cpu_seconds_total{cpu="1",mode="idle"} 1168.68
node_cpu_seconds_total{cpu="1",mode="iowait"} 3.86
node_cpu_seconds_total{cpu="1",mode="irq"} 0
node_cpu_seconds_total{cpu="1",mode="nice"} 0
node_cpu_seconds_total{cpu="1",mode="softirq"} 10.51
node_cpu_seconds_total{cpu="1",mode="steal"} 0
node_cpu_seconds_total{cpu="1",mode="system"} 80.21
node_cpu_seconds_total{cpu="1",mode="user"} 65.52
100 87804 0 87804 0 0 6163k 0 --:--:-- --:--:-- --:--:-- 6595k
3.2.3、安装Prometheus
安装步骤简介
1、创建用户并集群绑定集群角色(RBAC授权)
2、创建Prometheus配置文件(configmap)
3、创建Prometheus
创建用户
## 创建一个 sa 账号 monitor
kubectl create serviceaccount monitor -n monitor-sa
## 把 sa 账号 monitor 通过 clusterrolebing 绑定到 clusterrole 上
kubectl create clusterrolebinding monitor-clusterrolebinding -n monitor-sa --clusterrole=cluster-admin --serviceaccount=monitor-sa:monitor
## 创建 prometheus 数据存储目录
mkdir /data
chmod 777 /data/
创建configmap配置文件
---
kind: ConfigMap
apiVersion: v1
metadata:
labels:
app: prometheus
name: prometheus-config
namespace: monitor-sa
data:
prometheus.yml: |
# Prometheus配置文件内容
global:
scrape_interval: 15s #采集目标间隔时间
scrape_timeout: 10s #采集超时时间
evaluation_interval: 1m #触发告警时间
scrape_configs: #配置数据源,称为 target,每个 target 用 job_name 命名。又分为静态配置和服务发现
- job_name: 'kubernetes-node'
kubernetes_sd_configs:
- role: node
relabel_configs:
- source_labels: [__address__]
regex: '(.*):10250'
replacement: '${1}:9100'
target_label: __address__
action: replace
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- job_name: 'kubernetes-node-cadvisor'
kubernetes_sd_configs:
- role: node
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
relabel_configs:
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- target_label: __address__
replacement: kubernetes.default.svc:443
- source_labels: [__meta_kubernetes_node_name]
regex: (.+)
target_label: __metrics_path__
replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor
- job_name: 'kubernetes-apiserver'
kubernetes_sd_configs:
- role: endpoints
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
relabel_configs:
- source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
action: keep
regex: default;kubernetes;https
- job_name: 'kubernetes-service-endpoints'
kubernetes_sd_configs:
- role: endpoints
relabel_configs:
# 重新打标仅抓取到的具有 "prometheus.io/scrape: true" 的 annotation 的端点,意思是说如果某个 service 具有 prometheus.io/scrape = true annotation 声明则抓取,annotation 本身也是键值结构,所以这里的源标签设置为键,而 regex 设置值 true,当值匹配到 regex 设定的内容时则执行 keep 动作也就是保留,其余则丢弃。
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
action: keep
regex: true
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
action: replace
target_label: __scheme__
regex: (https?)
# 应用中自定义暴露的指标,也许你暴露的 API 接口不是/metrics 这个路径,那么你可以在这个POD 对应的 service 中做一个"prometheus.io/path = /mymetrics" 声明,下面的意思就是把你声明的这个路径赋值给__metrics_path__,其实就是让 prometheus 来获取自定义应用暴露的 metrices 的具体路径,不过这里写的要和 service 中做好约定,如果 service 中这样写 prometheus.io/app-metrics-path: '/metrics' 那么你这里就要 __meta_kubernetes_service_annotation_prometheus_io_app_metrics_path 这样写。
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: (.+)
# 暴露自定义的应用的端口,就是把地址和你在 service 中定义的 "prometheus.io/port = <port>" 声明做一个拼接,然后赋值给__address__,这样 prometheus 就能获取自定义应用的端口,然后通过这个端口再结合__metrics_path__来获取指标,如果__metrics_path__值不是默认的/metrics 那么就要使用上面的标签替换来获取真正暴露的具体路径。
- source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
action: replace
target_label: __address__
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
- action: labelmap
regex: __meta_kubernetes_service_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_service_name]
action: replace
target_label: kubernetes_name
部署Prometheus
## 注意:在上面的 prometheus-deploy.yaml 文件有个 nodeName 字段,这个就是用来指定创建的这个prometheus 的 pod 调度到哪个节点上,我们这里让 nodeName=xianchaonode1,也即是让 pod 调度到node01 节点上,因为 node01 节点我们创建了数据目录/data,所以大家记住:你在 k8s集群的哪个节点创建/data,就让 pod 调度到哪个节点,nodeName 根据你们自己环境主机去修改即可。
apiVersion: v1
kind: Service
metadata:
name: prometheus
namespace: monitor-sa
labels:
app: prometheus
spec:
type: NodePort
ports:
- port: 9090
targetPort: 9090
protocol: TCP
selector:
app: prometheus
component: server
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: prometheus-server
namespace: monitor-sa
labels:
app: prometheus
spec:
replicas: 1
selector:
matchLabels:
app: prometheus
component: server
#matchExpressions:
#- {key: app, operator: In, values: [prometheus]}
#- {key: component, operator: In, values: [server]}
template:
metadata:
labels:
app: prometheus
component: server
annotations:
prometheus.io/scrape: 'false'
spec:
nodeName: node01
serviceAccountName: monitor
containers:
- name: prometheus
image: prom/prometheus:v2.2.1
imagePullPolicy: IfNotPresent
command:
- prometheus
- --config.file=/etc/prometheus/prometheus.yml
- --storage.tsdb.path=/prometheus #旧数据存储目录
- --storage.tsdb.retention=720h #何时删除旧数据,默认为 15 天。
- --web.enable-lifecycle #开启热加载
ports:
- containerPort: 9090
protocol: TCP
volumeMounts:
- mountPath: /etc/prometheus/prometheus.yml
name: prometheus-config
subPath: prometheus.yml
- mountPath: /prometheus/
name: prometheus-storage-volume
volumes:
- name: prometheus-config
configMap:
name: prometheus-config
items:
- key: prometheus.yml
path: prometheus.yml
mode: 0644
- name: prometheus-storage-volume
hostPath:
path: /data
type: Directory
## 想要使配置生效可用如下命令热加载:
curl -X POST http://podIP:9090/-/reload
3.2.4、安装grafana
grafana简介
Grafana 是一个跨平台的开源的度量分析和可视化工具,可以将采集的数据可视化的展示,并及时通知给告警接收方。它主要有以下六大特点: 1、展示方式:快速灵活的客户端图表,面板插件有许多不同方式的可视化指标和日志,官方库中具有丰富的仪表盘插件,比如热图、折线图、图表等多种展示方式;
2、数据源:Graphite,InfluxDB,OpenTSDB,Prometheus,Elasticsearch,CloudWatch 和KairosDB 等;
3、通知提醒:以可视方式定义最重要指标的警报规则,Grafana 将不断计算并发送通知,在数据达到阈值时通过 Slack、PagerDuty 等获得通知;
4、混合展示:在同一图表中混合使用不同的数据源,可以基于每个查询指定数据源,甚至自定义数据源;
5、注释:使用来自不同数据源的丰富事件注释图表,将鼠标悬停在事件上会显示完整的事件元数据和标记。
部署yaml文件
apiVersion: apps/v1
kind: Deployment
metadata:
name: monitoring-grafana
namespace: kube-system
spec:
replicas: 1
selector:
matchLabels:
task: monitoring
k8s-app: grafana
template:
metadata:
labels:
task: monitoring
k8s-app: grafana
spec:
containers:
- name: grafana
image: docker.io/grafana/grafana:latest
ports:
- containerPort: 3000
protocol: TCP
volumeMounts:
- mountPath: /etc/ssl/certs
name: ca-certificates
readOnly: true
env:
- name: INFLUXDB_HOST
value: monitoring-influxdb
- name: GF_SERVER_HTTP_PORT
value: "3000"
# The following env variables are required to make Grafana accessible via
# the kubernetes api-server proxy. On production clusters, we recommend
# removing these env variables, setup auth for grafana, and expose the grafana
# service using a LoadBalancer or a public IP.
- name: GF_AUTH_BASIC_ENABLED
value: "false"
- name: GF_AUTH_ANONYMOUS_ENABLED
value: "true"
- name: GF_AUTH_ANONYMOUS_ORG_ROLE
value: Admin
- name: GF_SERVER_ROOT_URL
# If you're only using the API Server proxy, set this value instead:
# value: /api/v1/namespaces/kube-system/services/monitoring-grafana/proxy
value: /
volumes:
- name: ca-certificates
hostPath:
path: /etc/ssl/certs
---
apiVersion: v1
kind: Service
metadata:
labels:
# For use as a Cluster add-on (https://github.com/kubernetes/kubernetes/tree/master/cluster/addons)
# If you are NOT using this as an addon, you should comment out this line.
kubernetes.io/cluster-service: 'true'
kubernetes.io/name: monitoring-grafana
name: monitoring-grafana
namespace: kube-system
spec:
# In a production setup, we recommend accessing Grafana through an external Loadbalancer
# or through a public IP.
# type: LoadBalancer
# You could also use NodePort to expose the service at a randomly-generated port
# type: NodePort
ports:
- port: 80
targetPort: 3000
selector:
k8s-app: grafana
type: NodePort
3.2.5、安装 alertmanager QQ
报警:指 prometheus 将监测到的异常事件发送给 alertmanager
通知:alertmanager 将报警信息发送到邮件、微信、钉钉等
配置 alertmanager-发送报警到 qq 邮箱
# 创建 alertmanager 配置文件
vim alertmanager-cm.yaml
kind: ConfigMap
apiVersion: v1
metadata:
name: alertmanager
namespace: monitor-sa
data:
alertmanager.yml: |-
global:
resolve_timeout: 1m
smtp_smarthost: 'smtp.qq.com:465'
smtp_from: '1910907600@qq.com'
smtp_auth_username: '1910907600@qq.com'
smtp_auth_password: 'niwposvxuadqbeci'
smtp_require_tls: false
route:
group_by: [alertname]
group_wait: 10s
group_interval: 10s
repeat_interval: 10m
receiver: default-receiver
receivers:
- name: 'default-receiver'
email_configs:
- to: '1090683947@qq.com'
send_resolved: true
## prometheus配置文件(添加了报警规则)
vim prometheus-alertmanager-cfg.yaml
kind: ConfigMap
apiVersion: v1
metadata:
labels:
app: prometheus
name: prometheus-config
namespace: monitor-sa
data:
prometheus.yml: |
rule_files:
- /etc/prometheus/rules.yml
alerting:
alertmanagers:
- static_configs:
- targets: ["localhost:9093"]
global:
scrape_interval: 15s
scrape_timeout: 10s
evaluation_interval: 1m
scrape_configs:
- job_name: 'kubernetes-node'
kubernetes_sd_configs:
- role: node
relabel_configs:
- source_labels: [__address__]
regex: '(.*):10250'
replacement: '${1}:9100'
target_label: __address__
action: replace
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- job_name: 'kubernetes-node-cadvisor'
kubernetes_sd_configs:
- role: node
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
relabel_configs:
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- target_label: __address__
replacement: kubernetes.default.svc:443
- source_labels: [__meta_kubernetes_node_name]
regex: (.+)
target_label: __metrics_path__
replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor
- job_name: 'kubernetes-apiserver'
kubernetes_sd_configs:
- role: endpoints
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
relabel_configs:
- source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
action: keep
regex: default;kubernetes;https
- job_name: 'kubernetes-service-endpoints'
kubernetes_sd_configs:
- role: endpoints
relabel_configs:
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
action: keep
regex: true
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
action: replace
target_label: __scheme__
regex: (https?)
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: (.+)
- source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
action: replace
target_label: __address__
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
- action: labelmap
regex: __meta_kubernetes_service_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_service_name]
action: replace
target_label: kubernetes_name
- job_name: 'kubernetes-pods'
kubernetes_sd_configs:
- role: pod
relabel_configs:
- action: keep
regex: true
source_labels:
- __meta_kubernetes_pod_annotation_prometheus_io_scrape
- action: replace
regex: (.+)
source_labels:
- __meta_kubernetes_pod_annotation_prometheus_io_path
target_label: __metrics_path__
- action: replace
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
source_labels:
- __address__
- __meta_kubernetes_pod_annotation_prometheus_io_port
target_label: __address__
- action: labelmap
regex: __meta_kubernetes_pod_label_(.+)
- action: replace
source_labels:
- __meta_kubernetes_namespace
target_label: kubernetes_namespace
- action: replace
source_labels:
- __meta_kubernetes_pod_name
target_label: kubernetes_pod_name
- job_name: 'kubernetes-schedule'
scrape_interval: 5s
static_configs:
- targets: ['192.168.163.130:10251','192.168.163.132:10251','192.168.163.131:10251']
- job_name: 'kubernetes-controller-manager'
scrape_interval: 5s
static_configs:
- targets: ['192.168.163.130:10252','192.168.163.132:10252','192.168.163.131:10252']
- job_name: 'kubernetes-kube-proxy'
scrape_interval: 5s
static_configs:
- targets: ['192.168.163.130:10249','192.168.163.132:10249','192.168.163.131:10249']
- job_name: 'kubernetes-etcd'
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/ca.crt
cert_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.crt
key_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.key
scrape_interval: 5s
static_configs:
- targets: ['192.168.163.130:2379']
rules.yml: |
groups:
- name: example
rules:
- alert: kube-proxy的cpu使用率大于80%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
- alert: kube-proxy的cpu使用率大于90%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 90
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
- alert: scheduler的cpu使用率大于80%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
- alert: scheduler的cpu使用率大于90%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 90
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
- alert: controller-manager的cpu使用率大于80%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
- alert: controller-manager的cpu使用率大于90%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 0
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
- alert: apiserver的cpu使用率大于80%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
- alert: apiserver的cpu使用率大于90%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 90
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
- alert: etcd的cpu使用率大于80%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
- alert: etcd的cpu使用率大于90%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 90
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
- alert: kube-state-metrics的cpu使用率大于80%
expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"
value: "{{ $value }}%"
threshold: "80%"
- alert: kube-state-metrics的cpu使用率大于90%
expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 0
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"
value: "{{ $value }}%"
threshold: "90%"
- alert: coredns的cpu使用率大于80%
expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"
value: "{{ $value }}%"
threshold: "80%"
- alert: coredns的cpu使用率大于90%
expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 90
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"
value: "{{ $value }}%"
threshold: "90%"
- alert: kube-proxy打开句柄数>600
expr: process_open_fds{job=~"kubernetes-kube-proxy"} > 600
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
value: "{{ $value }}"
- alert: kube-proxy打开句柄数>1000
expr: process_open_fds{job=~"kubernetes-kube-proxy"} > 1000
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
value: "{{ $value }}"
- alert: kubernetes-schedule打开句柄数>600
expr: process_open_fds{job=~"kubernetes-schedule"} > 600
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
value: "{{ $value }}"
- alert: kubernetes-schedule打开句柄数>1000
expr: process_open_fds{job=~"kubernetes-schedule"} > 1000
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
value: "{{ $value }}"
- alert: kubernetes-controller-manager打开句柄数>600
expr: process_open_fds{job=~"kubernetes-controller-manager"} > 600
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
value: "{{ $value }}"
- alert: kubernetes-controller-manager打开句柄数>1000
expr: process_open_fds{job=~"kubernetes-controller-manager"} > 1000
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
value: "{{ $value }}"
- alert: kubernetes-apiserver打开句柄数>600
expr: process_open_fds{job=~"kubernetes-apiserver"} > 600
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
value: "{{ $value }}"
- alert: kubernetes-apiserver打开句柄数>1000
expr: process_open_fds{job=~"kubernetes-apiserver"} > 1000
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
value: "{{ $value }}"
- alert: kubernetes-etcd打开句柄数>600
expr: process_open_fds{job=~"kubernetes-etcd"} > 600
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
value: "{{ $value }}"
- alert: kubernetes-etcd打开句柄数>1000
expr: process_open_fds{job=~"kubernetes-etcd"} > 1000
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
value: "{{ $value }}"
- alert: coredns
expr: process_open_fds{k8s_app=~"kube-dns"} > 600
for: 2s
labels:
severity: warnning
annotations:
description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过600"
value: "{{ $value }}"
- alert: coredns
expr: process_open_fds{k8s_app=~"kube-dns"} > 1000
for: 2s
labels:
severity: critical
annotations:
description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过1000"
value: "{{ $value }}"
- alert: kube-proxy
expr: process_virtual_memory_bytes{job=~"kubernetes-kube-proxy"} > 2000000000
for: 2s
labels:
severity: warnning
annotations:
description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
value: "{{ $value }}"
- alert: scheduler
expr: process_virtual_memory_bytes{job=~"kubernetes-schedule"} > 2000000000
for: 2s
labels:
severity: warnning
annotations:
description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
value: "{{ $value }}"
- alert: kubernetes-controller-manager
expr: process_virtual_memory_bytes{job=~"kubernetes-controller-manager"} > 2000000000
for: 2s
labels:
severity: warnning
annotations:
description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
value: "{{ $value }}"
- alert: kubernetes-apiserver
expr: process_virtual_memory_bytes{job=~"kubernetes-apiserver"} > 2000000000
for: 2s
labels:
severity: warnning
annotations:
description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
value: "{{ $value }}"
- alert: kubernetes-etcd
expr: process_virtual_memory_bytes{job=~"kubernetes-etcd"} > 2000000000
for: 2s
labels:
severity: warnning
annotations:
description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
value: "{{ $value }}"
- alert: kube-dns
expr: process_virtual_memory_bytes{k8s_app=~"kube-dns"} > 2000000000
for: 2s
labels:
severity: warnning
annotations:
description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 使用虚拟内存超过2G"
value: "{{ $value }}"
- alert: HttpRequestsAvg
expr: sum(rate(rest_client_requests_total{job=~"kubernetes-kube-proxy|kubernetes-kubelet|kubernetes-schedule|kubernetes-control-manager|kubernetes-apiservers"}[1m])) > 1000
for: 2s
labels:
team: admin
annotations:
description: "组件{{$labels.job}}({{$labels.instance}}): TPS超过1000"
value: "{{ $value }}"
threshold: "1000"
- alert: Pod_restarts
expr: kube_pod_container_status_restarts_total{namespace=~"kube-system|default|monitor-sa"} > 0
for: 2s
labels:
severity: warnning
annotations:
description: "在{{$labels.namespace}}名称空间下发现{{$labels.pod}}这个pod下的容器{{$labels.container}}被重启,这个监控指标是由{{$labels.instance}}采集的"
value: "{{ $value }}"
threshold: "0"
- alert: Pod_waiting
expr: kube_pod_container_status_waiting_reason{namespace=~"kube-system|default"} == 1
for: 2s
labels:
team: admin
annotations:
description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}启动异常等待中"
value: "{{ $value }}"
threshold: "1"
- alert: Pod_terminated
expr: kube_pod_container_status_terminated_reason{namespace=~"kube-system|default|monitor-sa"} == 1
for: 2s
labels:
team: admin
annotations:
description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}被删除"
value: "{{ $value }}"
threshold: "1"
- alert: Etcd_leader
expr: etcd_server_has_leader{job="kubernetes-etcd"} == 0
for: 2s
labels:
team: admin
annotations:
description: "组件{{$labels.job}}({{$labels.instance}}): 当前没有leader"
value: "{{ $value }}"
threshold: "0"
- alert: Etcd_leader_changes
expr: rate(etcd_server_leader_changes_seen_total{job="kubernetes-etcd"}[1m]) > 0
for: 2s
labels:
team: admin
annotations:
description: "组件{{$labels.job}}({{$labels.instance}}): 当前leader已发生改变"
value: "{{ $value }}"
threshold: "0"
- alert: Etcd_failed
expr: rate(etcd_server_proposals_failed_total{job="kubernetes-etcd"}[1m]) > 0
for: 2s
labels:
team: admin
annotations:
description: "组件{{$labels.job}}({{$labels.instance}}): 服务失败"
value: "{{ $value }}"
threshold: "0"
- alert: Etcd_db_total_size
expr: etcd_debugging_mvcc_db_total_size_in_bytes{job="kubernetes-etcd"} > 10000000000
for: 2s
labels:
team: admin
annotations:
description: "组件{{$labels.job}}({{$labels.instance}}):db空间超过10G"
value: "{{ $value }}"
threshold: "10G"
- alert: Endpoint_ready
expr: kube_endpoint_address_not_ready{namespace=~"kube-system|default"} == 1
for: 2s
labels:
team: admin
annotations:
description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.endpoint}}不可用"
value: "{{ $value }}"
threshold: "1"
- name: 物理节点状态-监控告警
rules:
- alert: 物理节点cpu使用率
expr: 100-avg(irate(node_cpu_seconds_total{mode="idle"}[5m])) by(instance)*100 > 90
for: 2s
labels:
severity: ccritical
annotations:
summary: "{{ $labels.instance }}cpu使用率过高"
description: "{{ $labels.instance }}的cpu使用率超过90%,当前使用率[{{ $value }}],需要排查处理"
- alert: 物理节点内存使用率
expr: (node_memory_MemTotal_bytes - (node_memory_MemFree_bytes + node_memory_Buffers_bytes + node_memory_Cached_bytes)) / node_memory_MemTotal_bytes * 100 > 90
for: 2s
labels:
severity: critical
annotations:
summary: "{{ $labels.instance }}内存使用率过高"
description: "{{ $labels.instance }}的内存使用率超过90%,当前使用率[{{ $value }}],需要排查处理"
- alert: InstanceDown
expr: up == 0
for: 2s
labels:
severity: critical
annotations:
summary: "{{ $labels.instance }}: 服务器宕机"
description: "{{ $labels.instance }}: 服务器延时超过2分钟"
- alert: 物理节点磁盘的IO性能
expr: 100-(avg(irate(node_disk_io_time_seconds_total[1m])) by(instance)* 100) < 60
for: 2s
labels:
severity: critical
annotations:
summary: "{{$labels.mountpoint}} 流入磁盘IO使用率过高!"
description: "{{$labels.mountpoint }} 流入磁盘IO大于60%(目前使用:{{$value}})"
- alert: 入网流量带宽
expr: ((sum(rate (node_network_receive_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400
for: 2s
labels:
severity: critical
annotations:
summary: "{{$labels.mountpoint}} 流入网络带宽过高!"
description: "{{$labels.mountpoint }}流入网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}"
- alert: 出网流量带宽
expr: ((sum(rate (node_network_transmit_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400
for: 2s
labels:
severity: critical
annotations:
summary: "{{$labels.mountpoint}} 流出网络带宽过高!"
description: "{{$labels.mountpoint }}流出网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}"
- alert: TCP会话
expr: node_netstat_Tcp_CurrEstab > 1000
for: 2s
labels:
severity: critical
annotations:
summary: "{{$labels.mountpoint}} TCP_ESTABLISHED过高!"
description: "{{$labels.mountpoint }} TCP_ESTABLISHED大于1000%(目前使用:{{$value}}%)"
- alert: 磁盘容量
expr: 100-(node_filesystem_free_bytes{fstype=~"ext4|xfs"}/node_filesystem_size_bytes {fstype=~"ext4|xfs"}*100) > 80
for: 2s
labels:
severity: critical
annotations:
summary: "{{$labels.mountpoint}} 磁盘分区使用率过高!"
description: "{{$labels.mountpoint }} 磁盘分区使用大于80%(目前使用:{{$value}}%)"
## 重新部署prometheus
#生成一个 etcd-certs,这个在部署 prometheus 需要
kubectl -n monitor-sa create secret generic etcd-certs --from-file=/etc/kubernetes/pki/etcd/server.key --from-file=/etc/kubernetes/pki/etcd/server.crt --from-file=/etc/kubernetes/pki/etcd/ca.crt
vim prometheus-alertmanager-deploy.yaml
---
apiVersion: v1
kind: Service
metadata:
name: prometheus
namespace: monitor-sa
labels:
app: prometheus
spec:
type: NodePort
ports:
- port: 9090
targetPort: 9090
protocol: TCP
selector:
app: prometheus
component: server
---
apiVersion: v1
kind: Service
metadata:
labels:
name: prometheus
kubernetes.io/cluster-service: 'true'
name: alertmanager
namespace: monitor-sa
spec:
ports:
- name: alertmanager
nodePort: 30066
port: 9093
protocol: TCP
targetPort: 9093
selector:
app: prometheus
sessionAffinity: None
type: NodePort
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: prometheus-server
namespace: monitor-sa
labels:
app: prometheus
spec:
replicas: 1
selector:
matchLabels:
app: prometheus
component: server
#matchExpressions:
#- {key: app, operator: In, values: [prometheus]}
#- {key: component, operator: In, values: [server]}
template:
metadata:
labels:
app: prometheus
component: server
annotations:
prometheus.io/scrape: 'false'
spec:
nodeName: node01
serviceAccountName: monitor
containers:
- name: prometheus
image: prom/prometheus:v2.2.1
imagePullPolicy: IfNotPresent
command:
- "/bin/prometheus"
args:
- "--config.file=/etc/prometheus/prometheus.yml"
- "--storage.tsdb.path=/prometheus"
- "--storage.tsdb.retention=24h"
- "--web.enable-lifecycle"
ports:
- containerPort: 9090
protocol: TCP
volumeMounts:
- mountPath: /etc/prometheus
name: prometheus-config
- mountPath: /prometheus/
name: prometheus-storage-volume
- name: k8s-certs
mountPath: /var/run/secrets/kubernetes.io/k8s-certs/etcd/
- name: alertmanager
image: prom/alertmanager:v0.14.0
imagePullPolicy: IfNotPresent
args:
- "--config.file=/etc/alertmanager/alertmanager.yml"
- "--log.level=debug"
ports:
- containerPort: 9093
protocol: TCP
name: alertmanager
volumeMounts:
- name: alertmanager-config
mountPath: /etc/alertmanager
- name: alertmanager-storage
mountPath: /alertmanager
- name: localtime
mountPath: /etc/localtime
volumes:
- name: prometheus-config
configMap:
name: prometheus-config
- name: prometheus-storage-volume
hostPath:
path: /data
type: Directory
- name: k8s-certs
secret:
secretName: etcd-certs
- name: alertmanager-config
configMap:
name: alertmanager
- name: alertmanager-storage
hostPath:
path: /data/alertmanager
type: DirectoryOrCreate
- name: localtime
hostPath:
path: /usr/share/zoneinfo/Asia/Shanghai
解决k8s组件没监控上
kubernetes-controller-manager
kubernetes-schedule
kube-proxy
可按如下方法处理:
vim /etc/kubernetes/manifests/kube-scheduler.yaml
修改如下内容:
把--bind-address=127.0.0.1 变成--bind-address=192.168.163.130 把 httpGet:字段下的 hosts 由 127.0.0.1 变成 192.168.163.130 把--port=0 删除
#注意:192.168.163.130 是 k8s 的控制节点 master01 的 ip
vim /etc/kubernetes/manifests/kube-controller-manager.yaml
把--bind-address=127.0.0.1 变成--bind-address=192.168.40.130
把 httpGet:字段下的 hosts 由 127.0.0.1 变成 192.168.163.130 把—port=0 删除
修改之后在 k8s 各个节点执行
systemctl restart kubelet
kube-proxy 默认端口 10249 是监听在 127.0.0.1 上的,需要改成监听到物理节点上,
按如下方法修改,线上建议在安装 k8s 的时候就做修改,这样风险小一些:
kubectl edit configmap kube-proxy -n kube-system
把 metricsBindAddress 这段修改成 metricsBindAddress: 0.0.0.0:10249
然后重新启动 kube-proxy 这个 pod
3.2.6、钉钉报警
altermanger配置文件
# 创建 alertmanager 配置文件
vim alertmanager-cm.yaml
kind: ConfigMap
apiVersion: v1
metadata:
name: alertmanager
namespace: monitor-sa
data:
alertmanager.yml: |-
global:
resolve_timeout: 5m
route:
receiver: webhook
group_wait: 30s
group_interval: 5m
repeat_interval: 5m
group_by: [alertname]
routes:
- receiver: webhook
group_wait: 10s
receivers:
- name: webhook
webhook_configs:
- url: 'http://192.168.163.130:8060/dingtalk/webhook1/send' ##要写钉钉pod部署的IP
send_resolved: true
部署webhook
vim dingding.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: prometheus-webhook-dingtalk
namespace: monitor-sa
spec:
progressDeadlineSeconds: 600
replicas: 1
revisionHistoryLimit: 10
selector:
matchLabels:
app: prometheus-webhook-dingtalk
strategy:
rollingUpdate:
maxSurge: 25%
maxUnavailable: 25%
type: RollingUpdate
template:
metadata:
creationTimestamp: null
labels:
app: prometheus-webhook-dingtalk
spec:
hostPID: true
hostIPC: true
hostNetwork: true
nodeName: node01
containers:
- image: timonwong/prometheus-webhook-dingtalk
imagePullPolicy: IfNotPresent
name: webhook
ports:
- containerPort: 8086
resources:
limits:
cpu: 10m
memory: 50Mi
requests:
cpu: 10m
memory: 50Mi
volumeMounts:
- mountPath: /etc/prometheus-webhook-dingtalk/config.yml
name: config
subPath: config.yml
- mountPath: /etc/prometheus-webhook-dingtalk/default.tmpl
name: config
subPath: default.tmpl
dnsPolicy: ClusterFirst
restartPolicy: Always
schedulerName: default-scheduler
securityContext: {}
terminationGracePeriodSeconds: 30
volumes:
- configMap:
defaultMode: 420
name: idaas-prometheus-webhook-dingtalk-config
name: config
---
kind: ConfigMap
apiVersion: v1
metadata:
labels:
app: prometheus
name: idaas-prometheus-webhook-dingtalk-config
namespace: monitor-sa
data:
config.yml: |-
timeout: 5s
#no_builtin_template: true
templates:
- /etc/prometheus-webhook-dingtalk/default.tmp
targets:
webhook1:
url: ##钉钉的api
secret: ##钉钉的secret
default.tmpl: |-
{{ define "__subject" }}[{{ .Status | toUpper }}{{ if eq .Status "firing" }}:{{ .Alerts.Firing | len }}{{ end }}] {{ .GroupLabels.SortedPairs.Values | join " " }} {{ if gt (len .CommonLabels) (len .GroupLabels) }}({{ with .CommonLabels.Remove .GroupLabels.Names }}{{ .Values | join " " }}{{ end }}){{ end }}{{ end }}
{{ define "__alertmanagerURL" }}{{ .ExternalURL }}/#/alerts?receiver={{ .Receiver }}{{ end }}
{{ define "__text_alert_list" }}{{ range . }}
**Labels**
{{ range .Labels.SortedPairs }} - {{ .Name }}: {{ .Value | markdown | html }}
{{ end }}
**Annotations**
{{ range .Annotations.SortedPairs }} - {{ .Name }}: {{ .Value | markdown | html }}
{{ end }}
**Source:** [{{ .GeneratorURL }}]({{ .GeneratorURL }})
{{ end }}{{ end }}
{{ define "default.__text_alert_list" }}{{ range . }}
---
**告警级别:** {{ .Labels.status | upper }}
**运营团队:** {{ .Labels.team | upper }}
**触发时间:** {{ dateInZone "2006.01.02 15:04:05" (.StartsAt) "Asia/Shanghai" }}
**事件信息:**
{{ range .Annotations.SortedPairs }} - {{ .Name }}: {{ .Value | markdown | html }}
{{ end }}
**事件标签:**
{{ range .Labels.SortedPairs }}{{ if and (ne (.Name) "status") (ne (.Name) "summary") (ne (.Name) "team") }} - {{ .Name }}: {{ .Value | markdown | html }}
{{ end }}{{ end }}
{{ end }}
{{ end }}
{{ define "default.__text_alertresovle_list" }}{{ range . }}
---
**告警级别:** {{ .Labels.status | upper }}
**运营团队:** {{ .Labels.team | upper }}
**触发时间:** {{ dateInZone "2006.01.02 15:04:05" (.StartsAt) "Asia/Shanghai" }}
**结束时间:** {{ dateInZone "2006.01.02 15:04:05" (.EndsAt) "Asia/Shanghai" }}
**事件信息:**
{{ range .Annotations.SortedPairs }} - {{ .Name }}: {{ .Value | markdown | html }}
{{ end }}
**事件标签:**
{{ range .Labels.SortedPairs }}{{ if and (ne (.Name) "status") (ne (.Name) "summary") (ne (.Name) "team") }} - {{ .Name }}: {{ .Value | markdown | html }}
{{ end }}{{ end }}
{{ end }}
{{ end }}
{{/* Default */}}
{{ define "default.title" }}{{ template "__subject" . }}{{ end }}
{{ define "default.content" }}#### [{{ .Status | toUpper }}{{ if eq .Status "firing" }}:{{ .Alerts.Firing | len }}{{ end }}] **[{{ index .GroupLabels "alertname" }}]({{ template "__alertmanagerURL" . }})**
{{ if gt (len .Alerts.Firing) 0 -}}
{{ template "default.__text_alert_list" .Alerts.Firing }}
{{- end }}
{{ if gt (len .Alerts.Resolved) 0 -}}
{{ template "default.__text_alertresovle_list" .Alerts.Resolved }}
{{- end }}
{{- end }}
{{/* Legacy */}}
{{ define "legacy.title" }}{{ template "__subject" . }}{{ end }}
{{ define "legacy.content" }}#### [{{ .Status | toUpper }}{{ if eq .Status "firing" }}:{{ .Alerts.Firing | len }}{{ end }}] **[{{ index .GroupLabels "alertname" }}]({{ template "__alertmanagerURL" . }})**
{{ template "__text_alert_list" .Alerts.Firing }}
{{- end }}
{{/* Following names for compatibility */}}
{{ define "ding.link.title" }}{{ template "default.title" . }}{{ end }}
{{ define "ding.link.content" }}{{ template "default.content" . }}{{ end }}
3.3、PromQL 语法
PromQL(Prometheus Query Language)是 Prometheus 自己开发的表达式语言,语言表现力很丰富,内置函数也很多。使用它可以对时序数据进行筛选和聚合。
3.3.1、数据类型
PromQL 表达式计算出来的值有以下几种类型:
瞬时向量 (Instant vector): 一组时序,每个时序只有一个采样值
区间向量 (Range vector): 一组时序,每个时序包含一段时间内的多个采样值
标量数据 (Scalar): 一个浮点数
字符串 (String): 一个字符串,暂时未用
瞬时向量选择器
瞬时向量选择器用来选择一组时序在某个采样点的采样值。
最简单的情况就是指定一个度量指标,选择出所有属于该度量指标的时序的当前采样值。比如下面的表达式:
apiserver_request_total
可以通过在后面添加用大括号包围起来的一组标签键值对来对时序进行过滤。比如下面的表达式筛选出了 job 为 kubernetes-apiservers,并且 resource 为 pod 的时序:
apiserver_request_total{job="kubernetes-apiserver",resource="pods"}
匹配标签值时可以是等于,也可以使用正则表达式。总共有下面几种匹配操作符:
=:完全相等
!=: 不相等
=~: 正则表达式匹配
!~: 正则表达式不匹配
下面的表达式筛选出了 container 是 kube-scheduler 或 kube-proxy 或 kube-apiserver 的时序数据
container_processes{container=~"kube-scheduler|kube-proxy|kube-apiserver"}
区间向量选择器
区间向量选择器类似于瞬时向量选择器,不同的是它选择的是过去一段时间的采样值。可以通过在瞬时向量选择器后面添加包含在 [] 里的时长来得到区间向量选择器。比如下面的表达式选出了所有度量指标为 apiserver_request_total 且 resource 是 pod 的时序在过去 1 分钟的采样值。
apiserver_request_total{job="kubernetes-apiserver",resource="pods"}[1m]
这个不支持 Graph,需要选择 Console,才会看到采集的数据
说明:时长的单位可以是下面几种之一:
s:seconds
m:minutes
h:hours
d:days
w:weeks
y:years
偏移向量选择器
前面介绍的选择器默认都是以当前时间为基准时间,偏移修饰器用来调整基准时间,使其往前偏移一段时间。偏移修饰器紧跟在选择器后面,使用 offset 来指定要偏移的量。比如下面的表达式选择度量名称为 apiserver_request_total 的所有时序在 5 分钟前的采样值。
apiserver_request_total{job="kubernetes-apiserver",resource="pods"} offset 5m
下面的表达式选择 apiserver_request_total 度量指标在 1 周前的这个时间点过去 5 分钟的采样值。
apiserver_request_total{job="kubernetes-apiserver",resource="pods"} [5m] offset 1w
3.3.2、PromQL操作符
聚合操作符
聚合操作符
PromQL 的聚合操作符用来将向量里的元素聚合得更少。总共有下面这些聚合操作符:
sum:求和
min:最小值
max:最大值
avg:平均值
stddev:标准差
stdvar:方差
count:元素个数
count_values:等于某值的元素个数
bottomk:最小的 k 个元素
topk:最大的 k 个元素
quantile:分位数
如: 计算 master01 节点所有容器总计内存
sum(container_memory_usage_bytes{instance=~"master01"})/1024/1024/1024
计算 master01 节点最近 1m 所有容器 cpu 使用率
sum (rate (container_cpu_usage_seconds_total{instance=~"master01"}[1m])) / sum (machine_cpu_cores{ instance =~"master01"}) * 100
计算最近 1m 所有容器 cpu 使用率
sum (rate (container_cpu_usage_seconds_total{id!="/"}[1m])) by (id) #把 id 会打印出来
#PromSQL CPU使用率:
100 - (avg(irate(node_cpu_seconds_total{mode="idle"}[5m])) by (instance) * 100)
#PromSQL 内存使用率:
100 - (node_memory_MemFree_bytes+node_memory_Cached_bytes+node_memory_Buffers_bytes) / node_memory_MemTotal_bytes * 100
#PromSQL 磁盘使用率
100 - (node_filesystem_free_bytes{mountpoint="/",fstype=~"ext4|xfs"} / node_filesystem_size_bytes{mountpoint="/",fstype=~"ext4|xfs"} * 100)
函数
Prometheus 内置了一些函数来辅助计算,下面介绍一些典型的。
abs():绝对值
sqrt():平方根
exp():指数计算
ln():自然对数
ceil():向上取整
floor():向下取整
round():四舍五入取整
delta():计算区间向量里每一个时序第一个和最后一个的差值
sort():排序
更多推荐
所有评论(0)