Python中StandardScaler
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x = sc.fit_transform(x)

一: 数组x标准化公式

x为数组,\mu为数组x的平均值,\sigma为数组x的标准差,则标准化的公式为:(x-u)/\sigma

import numpy as np
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x = np.arange(1,6)       # x = np.array([1 2 3 4 5])
x_mean = np.mean(x)      # x_mean即为数组x的平均值
x_std = np.std(x)        # 数组x的标准差
print(x)
print(x_mean)            # 3
print(x_std)             # 1.4142135623730951
print((x-x_mean)/x_std)
#
[[-1.41421356]
 [-0.70710678]
 [ 0.        ]
 [ 0.70710678]
 [ 1.41421356]]
x = x.reshape(-1,1)      #需要将x转成列向量,否则会报错
print(sc.fit_transform(x))

## sc.fit_transform(x)
[[-1.41421356]
 [-0.70710678]
 [ 0.        ]
 [ 0.70710678]
 [ 1.41421356]]

Logo

华为开发者空间,是为全球开发者打造的专属开发空间,汇聚了华为优质开发资源及工具,致力于让每一位开发者拥有一台云主机,基于华为根生态开发、创新。

更多推荐