OpenCV中的透视变换介绍
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达本文转自:opencv学堂透视变换原理透视变换是将图像从一个视平面投影到另外一个视平面的过程,所...
点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
本文转自:opencv学堂
透视变换原理
透视变换是将图像从一个视平面投影到另外一个视平面的过程,所以透视变换也被称为投影映射(Projection Mapping)。我们知道在图像的仿射变换中需要变换矩阵是一个2x3的两维平面变换矩阵,而透视变换本质上空间立体三维变换,根据其次坐标方差,要把三维坐标投影到另外一个视平面,就需要一个完全不同的变换矩阵M,所以这个是透视变换跟OpenCV中几何仿射变换最大的不同。
OpenCV中透视变换的又分为两种:
- 密集透视变换
- 稀疏透视变换
我们经常提到的对图像的透视变换都是指密集透视变换,而稀疏透视变换在OpenCV的特征点匹配之后的特征对象区域标识中经常用到。一般情况下密集透视变换warpPerspective函数常与函数getPerspectiveTransform一起使用实现对图像的透视校正。而稀疏透视变换perspectiveTransform经常与findhomography一起使用。
API介绍
warpPerspective - 实现图像透视变换
-src
参数表示输入图像
-dst
参数表示输出图像
-M
参数表示透视变换矩阵(3x3)
-dsize
参数表示输出图像大小
-flags
参数表示插值方法,一般为线性或者最近邻插值
-borderMode
参数表示对边缘的处理方法,有默认值
一般不用设。
-borderValue
参数表示边缘的填充演示,默认是黑色
getPerspectiveTransform - 获取透视变换矩阵
-src
参数表示输入透视变换前图像四点坐标
-dst
参数表示输入透视变换后图像四点坐标
返回值类型Mat
该函数返回透视变换矩阵M大小为3x3
API调用代码演示
限于篇幅,我们这里只会演示图像透视变换,至于稀疏透视变换相关API演示以后会单独写一篇文章介绍,运行效果如下
左边是原图,右边是透视校正之后的图像。
相关代码如下:
主要根据输入的坐标点获取透视变换矩阵,然后利用透视变换矩阵实现图像透视校正,这个在实际工作中非常有用!
下载1:OpenCV-Contrib扩展模块中文版教程
在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。
下载2:Python视觉实战项目52讲
在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。
下载3:OpenCV实战项目20讲
在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。
交流群
欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~
更多推荐
所有评论(0)