曾今SOA的概念犹如今日“云计算、大数据”一样,被炒得火热,不少企业便纷纷响应,并宣称会拥抱和实施SOA。而事实上,业界出现了两种极端:一种是由于各类文章和书籍关于SOA的描述往往太过抽象,再加上各大厂商的呼吁,使得SOA往往显得“高大上”,令不少企业和架构师们望而却步。第二种恰好相反,有部分人却认为SOA无非是“新瓶装旧酒”。

 

个人理解,SOA在宏观上确实太复杂,因为它涉及到的不仅仅是技术和架构本身。而从技术的视角来看,并非难以落地。

 

SOA全称“面向服务架构”,它提供的是一种架构风格和理念,而并非是一种技术或者产品。并不是说项目中用了WebService、WCF、Hessian、RMI之类的就是SOA了。

通俗点来讲,SOA提倡将不同应用程序的业务功能封装成“服务”并宿主起来,通常以接口和契约的形式暴露并提供给外界应用访问(通过交换消息),达到不同系统可重用的目的。

流行的WebService等可以看作是实现SOA基础设施的技术方法。当然,实践SOA不仅需要解决服务调用的问题,还包括服务编排、服务治理、服务路由、服务监控等一系列的问题。在大型分布式系统中,SOA被广泛实践,但是在不同的应用场景中,设计方法也大不相同。

 

SOA是一个组件模型,它能将不同的服务通过定义良好的接口和契约联系起来。服务是SOA的基石,在开始服务设计和SOA实践之前,有必要先了解服务的概念以及服务的常见特性。

 

 

何为服务

服务的概念非常宽泛,在宏观上,服务的理解是“为他人做事,满足他人需要,而且通常是不以实物形式提供劳动的…”。在SOA系统中,服务指的是应用程序的功能单元,它通常体现了业务功能。服务是一种抽象,它向服务使用者隐藏了服务内部的实现细节。根据服务设计的基本原则,服务可能会具有以下特性:

l  自治(理)性 

服务应该是独立部署和运行存在的,且边界清晰,应尽量减少对外部的引用和依赖。

l  粗粒度

服务调用是需要开销的,这也是实现松耦合的分布式系统必须付出的代价。因此,应尽量通过一次服务调用传输所有需要的数据,而不是分多次去调用服务和组装数据。

l  可见性

服务是对外提供的,必须在某公共的地方可搜寻和发现,且服务要有必要的描述。

l  无状态

服务不应该依赖于其他服务的上下文、会话等,尽量减少不必要的状态管理流程所带来的资源消耗。但是,对于业务流程服务而言,状态数据是不可避免的。

l  幂等性

当消费者调用服务后,服务调用可能会有“成功、失败、超时”这三种状态,当服务并没有最终响应完成时,消费者可以尝试反复地调用服务,这样仍不会影响到最终结果。

l  可重用性

服务应该是可以被重用的,相同功能应可以调用相同的服务,这也是软件设计的原则。

l  可组合

服务是可以被当作成一个步骤的,服务也可以调用其它的服务。这样能够灵活的组合。

 

有关服务的“粗粒度、无状态、幂等性”等特性,一直是饱受争议的话题,可谓见仁见智。这里有必要说明下,这些特性并不是服务不可或缺的,应当在实践中根据需求来取舍。

SOA所面临的问题

SOA架构将公共的业务拆分出来,形成可共用的服务,最大程度的保障了代码和逻辑的复用,避免了系统的重复建设,并且让应用程序的部署找到了一种持续可扩展的方案,给应用抗负载能力带来了质的飞跃。

SOA架构所面临的一大问题就是如何解决集成服务应用普遍存在的一致性问题,举例来说,同时调用多个服务,当其中一个服务调用失败时,其他服务已经处理执行的结果该如何进行回滚,这在单机本地调用的情况下使用事务比较好处理,而分布式环境下的事务将问题复杂化,并且性能开销难以承受,因此,只有在极端情况下才会考虑强一致性,一般情况下更多的关注最终一致性。另外一个就是安全问题,面向企业的平台级的SOA架构,需要对参数传递、响应内容以及各种用户私有信息的交互,有着更严格的且特殊的安全需求,如何构建一个安全的SOA架构体系,也给技术人员带来了很大的挑战。

在讲了很多“大而空”的理论之后,估计很多人要拍砖了。后面文章中将会讲一些干货,更贴合实际应用。先预告一下后面文章:

1.SOA之基于服务总线的设计

(从设计的角度讲述服务总线--比较适合企业级系统集成的设计方式)

2.大型分布式网站的演变历程

(随着网站快速发展,解决业务复杂化、大流量、稳定性等问题的必经之路。正所谓“天下大势,分久必合,合久必分”。

重点不是讲负载均衡这些手段,而是设计层面的“集中式”到“分布式”)

3.SOA架构体系之通信协议和远程调用(RPC)

(讲解具体的实现技术,对比各自优缺点)

4.SOA之基于服务框架的应用

(服务化实践--介绍流行的服务框架,重点演示一种服务框架的使用)


基于服务总线的设计

基于总线的设计,借鉴了计算机内部硬件组成的设计思想(通过总线传输数据)。在分布式系统中,不同子系统之间需要实现相互通信和远程调用,比较直接的方式就是“点对点”的通信方式,但是这样会暴露出一些很明显的问题:系统之间紧密耦合、配置和引用混乱、服务调用关系错综复杂、难以统一管理、异构系统之间存在不兼容等。而基于总线的设计,正是为了解决上述问题。总线则作为中枢系统,提供统一的服务入口,并实现了服务统一管理、服务路由、协议转换、数据格式转换等功能。这样能够将不同系统有效地连接起来,并大大降低了连接数(每个子系统只需要和总线建立连接)和系统间连接拓扑的复杂度。如图所示:

0?wx_fmt=jpeg

 

基于服务总线的设计,往往需要ESB(Enterprise Service Bus,企业服务总线)产品来充当基础设施。ESB采用了“总线”这样一种模式来管理和简化应用之间的集成拓扑结构,以广为接受的开放标准为基础来支持应用之间在消息、事件和服务的级别上动态的互连互通。 ESB是一种在松散耦合的服务和应用之间标准的集成方式。

在其内部设计和实现中,通常会应用到一些经典的架构模式,例如:Broker模式、消息总线模式、管道过滤器模式、发布订阅模式等。这里,我们将重点介绍这几种核心的架构模式。

Broker模式

Broker可以看作是服务总线中的一部分,通常应用于同步调用的场景(调用服务后阻塞,等待远程服务响应完成后再返回结果)。Broker可以看作是代理、分发,意味着对服务的调用,可以直接通过Broker来完成。在软件架构设计中,向已经存在(引用或者调用)关系的两者中间加入“第三者”是一种常见的解耦方式,显然,Broker也不例外。如下图所示:

 0?wx_fmt=jpeg

为了进一步加深读者对Broker模式的理解,这里通过举例来说明:

在现实生活中,我们需要租房子(可以看作是一种服务调用),可以通过几种途径来完成。第一,我们可以先在网上了解,然后跑到目标小区去询问和看房,最后再找房东签合同等;第二,也可以直接找附近的地产中介,说出我们的要求和预算,请中介直接帮我们搞定一切。很明显,第一种方式,需要自己对目标有足够的了解而且还要亲自去找房东签合同(依赖具体,可以看作是紧密耦合),而第二种方式,仅仅需要告知中介需要什么即可完成租房,甚至都不需要知道哪个小区有房子、房东到底是谁等这些信息(依赖抽象,并通过第三者来实现解耦)。当然,找中介虽然省事,也会产生额外的经济开销。同理,通过Broker来调用服务也可能会产生一定的开销。

 

消息总线模式

 

SOA系统有三种基础组件:消息总线、信息转换/处理引擎和存储库。一般来说,这些组件会集成到ESB中,而在这些基础组件中,消息总线是最重要的。消息总线主要应用于异步通信场景(投递消息后立刻返回结果,而不用等待远程系统返回执行成功),可以大大提升响应速度和系统吞吐量。当然,消息总线也同时支持同步通信模式。基于消息总线模式的设计中,消息中间件屏蔽了系统间底层通信的细节,是比较典型的(异步)松耦合的架构。

在企业中,随着业务的逐渐发展,各大系统之间的调用交互变得非常频繁,关系错综复杂。

想象如果有几十或者上百个系统(在保险、金融领域很常见),将变得难以维护。通过引入消息中间件,便能有效的解决这些问题。不同系统之间,只需要连接到消息总线,能保证成功投递/接收消息即可。对于消息投递者(生产者)而言,根本不用关心消息的接收者(消费者)到底有哪些,也不用关心消费者接收到消息之后该如何处理。对于接收者(消费者)而言,只需要关注与自己有关的消息,接收到消息后并做出相应的处理即可。如下图所示:

0?wx_fmt=jpeg

比较典型的应用场景:张三在CRM系统中录入了一条客户签约订单的信息并审核通过后,CRM系统会向消息总线投递一条消息(消息中包含必要信息,例如员工ID,订单编号,产品编号和交易金额等,而CRM系统不用关心有哪些系统会接受到该消息)。员工绩效奖金管理系统订阅了该消息主题,收到消息通知后开始处理(给张三执行加奖金操作),同时,进销存系统收到消息通知后也会即时地更新商品库存的数量。这样,便实现异构系统之间的松耦合、异步通信。当然,真实场景可能比这里更复杂,但是实现思路上都大同小异。

 

在理解了上述实例之后,有必要了解下Java EE中被广泛应用和实现的JMS(Java消息服务)。

JMS是一种关于消息的规范,业界流行的ActiveMQ则是实现了JMS规范的开源消息总线。

JMS支持两种模式:发布/订阅模式和队列模式(点对点模式)。其中,发布/订阅模式借鉴了现实生活中的出版社(发布图书)和读者(订阅图书),消息的消费者(读者)只需要订阅自己感兴趣的消息(图书)即可,消息生产者(出版社)生产(出版)了消费者(读者)感兴趣的新消息(新书)后,会通知消费者(读者)接受处理。在JMS发布/订阅模式中,通常以Topic(主题)来标识消息,是一对多的模式,意味着同一个主题可以同时被多个消费者来订阅和消费。而在JMS 队列模型中,通常以Queue name来标识消息,是一对一的模型,意味着同一条消息只能被一个消费者接收并消费(且只能被消费一次)。在生产者和消费者都是集群的环境中,通常需要将这两种模式结合起来使用,情况会复杂很多,而且需要考虑容错性、负载均衡、消息一致性、消息优先级等复杂的问题。

业界主流的消息总线(消息中间件)产品,普遍支持消息过滤、自动重试、分布式事务、持久化、消息优先级、消息回溯、(生产者/消费者/中间件自身)集群、故障转移等高级特性。

 

 

总结

 

基于总线架构的主要优势在于:

l  可扩展性

使用消息架构,可以在不影响现有应用的情况下增加或移除应用。

l  低复杂度

每个应用只需要和总线通信,只有1个连接点,降低了应用程序集成的复杂度。

l  灵活性

对于构成复杂处理的应用程序通信组来说,只需要改变配置和控制路由参数就能满足业务逻辑或者需求变更,而不需要更改服务本身。

l  松耦合

应用程序直接和消息总线通信,不依赖其它应用程序,因此可以替换和修改。

l  可扩展性

可以把多个应用程序附加到总线上,进行并发处理,达到负载均衡的目的。

 

基于总线的模型,可以面向同构和异构系统(跨平台)。当前主要应用于传统企业应用的整合与系统集成中(例如:电信、保险、金融等行业)。由于基于总线的模型是一种集中式的架构,总线自身容易形成性能瓶颈,而且在实现高可用和容错性方面的复杂度和成本相对较高。所以,该模式并不是很适合于高并发、高性能、高吞吐量的互联网应用。

 

注:关于消息总线(消息中间件)的知识点很多,在实际应用中还有很多更加深入和复杂的细节问题。由于篇幅问题,笔者就不做过多的细节介绍和展开,感兴趣的读者,可以自行去查阅相关资料或者参考开源产品,做深入的学习和研究。

ESB产品主要包括:开源Mule ESB、ServiceMix、JBoss ESB,商业的Oracle ESB、BEA AquaLogic ServiceBus,.NET领域的NService Bus、MassTransit等。

MQ产品主要包括:ActiveMQ、RabbiteMQ、ZeroMQ、RocketMQ、Kafka、MSMQ等。

出处:http://blog.csdn.net/dinglang_2009/article/details/44516657

Logo

华为开发者空间,是为全球开发者打造的专属开发空间,汇聚了华为优质开发资源及工具,致力于让每一位开发者拥有一台云主机,基于华为根生态开发、创新。

更多推荐