利用TOPSIS综合评价打分模型实现cloudsim中虚拟机分配策略(不可迁移)VmAllocationPolicy
云计算中虚拟机分配策略有诸多方法,现内置于cloudsim工程包里自带随机分配(Random)、首次适应(FirstFit)、最佳适应(BestFit)、轮盘(RoundRobin)等调度方法。虚拟机调度问题这种寻优过程也可引用多属性决策的思想,本文笔者尝试利用数学建模中经典的综合评价指标模型--TOPSIS来解决云计算中虚拟机分配策略的问题。TOPSIS(Technique for Order
·
云计算中虚拟机分配策略有诸多方法,现内置于cloudsim工程包里自带随机分配(Random)、首次适应(FirstFit)、最佳适应(BestFit)、轮盘(RoundRobin)等调度方法。虚拟机调度问题这种寻优过程也可引用多属性决策的思想,本文笔者尝试利用数学建模中经典的综合评价指标模型--TOPSIS来解决云计算中虚拟机分配策略的问题。
TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution )模型中文叫做“逼近理想解排序方法”,是根据评价对象与理想化目标的接近程度进行排序的方法,是一种距离综合评价方法。基本思路是通过假定正、负理想解,测算各样本与正、负理想解的距离,得到其与理想方案的相对贴近度(即距离正理想解越近同时距离负理想解越远),进行各评价对象的优劣排序。本文选取三个指标作为选取最佳主机的标准,分别为:
(1) 可用性availability:定义为主机剩余可用资源最多的,即将 VM 放置到剩余资源最多的机。
(2) 负载均衡load_balance:定义为单个主机负载(考虑 CPU,内存,带宽)距离数据中心中所有主机负载均值的距离或者方差。
(3) 相似性similarity:计算待迁移虚拟机和主机上虚拟机的资源请求相似度,设定一个阈值,过于相似的就放弃选择该主机。
通过上述指标给主机综合打分,讲得分最高的资源给Vm,并输出使用该算法找到资源的时间与主机消耗能耗表。
以下为利用TOPSIS实现虚拟机分配策略的实例代码:
VmAllocationPolicyTOPSISandPOWERExample_sherry.java
package org.cloudsimplus.examples;
import org.cloudbus.cloudsim.allocationpolicies.VmAllocationPolicy;
import org.cloudbus.cloudsim.allocationpolicies.VmAllocationPolicyAbstract;
import org.cloudbus.cloudsim.brokers.DatacenterBroker;
import org.cloudbus.cloudsim.brokers.DatacenterBrokerSimple;
import org.cloudbus.cloudsim.cloudlets.Cloudlet;
import org.cloudbus.cloudsim.cloudlets.CloudletSimple;
import org.cloudbus.cloudsim.core.CloudSim;
import org.cloudbus.cloudsim.datacenters.Datacenter;
import org.cloudbus.cloudsim.datacenters.DatacenterSimple;
import org.cloudbus.cloudsim.hosts.Host;
import org.cloudbus.cloudsim.hosts.HostSimple;
import org.cloudbus.cloudsim.power.models.PowerModelHost;
import org.cloudbus.cloudsim.power.models.PowerModelHostSimple;
import org.cloudbus.cloudsim.provisioners.PeProvisionerSimple;
import org.cloudbus.cloudsim.provisioners.ResourceProvisioner;
import org.cloudbus.cloudsim.provisioners.ResourceProvisionerSimple;
import org.cloudbus.cloudsim.resources.Pe;
import org.cloudbus.cloudsim.resources.PeSimple;
import org.cloudbus.cloudsim.schedulers.cloudlet.CloudletSchedulerTimeShared;
import org.cloudbus.cloudsim.schedulers.vm.VmScheduler;
import org.cloudbus.cloudsim.schedulers.vm.VmSchedulerTimeShared;
import org.cloudbus.cloudsim.utilizationmodels.UtilizationModel;
import org.cloudbus.cloudsim.utilizationmodels.UtilizationModelDynamic;
import org.cloudbus.cloudsim.utilizationmodels.UtilizationModelFull;
import org.cloudbus.cloudsim.vms.HostResourceStats;
import org.cloudbus.cloudsim.vms.Vm;
import org.cloudbus.cloudsim.vms.VmSimple;
import org.cloudsimplus.builders.tables.CloudletsTableBuilder;
import java.util.*;
import static java.util.Comparator.comparingLong;
import java.util.List;
public class VmAllocationPolicyTOPSISandPOWERExample_sherry {
private static final int SCHEDULING_INTERVAL = 10;
private static final int HOSTS = 30;
private static final int HOST_PES =10;
private static final int HOST_MIPS = 1000;
private static final int VMS = 15;
// 设置虚拟机Pe核为4或5
// private static final int VM_PES = [4,5];
private static final int CLOUDLETS = 30;
private static final int CLOUDLET_PES = 4;
private static final int CLOUDLET_LENGTH = 50000;
/**
* Defines the power a Host uses, even if it's idle (in Watts).
*/
private static final double STATIC_POWER = 35;
/**
* The max power a Host uses (in Watts).
*/
private static final int MAX_POWER = 50;
private final CloudSim simulation;
private DatacenterBroker broker0;
private List<Vm> vmList;
private List<Cloudlet> cloudletList;
private Datacenter datacenter0;
private List<Host> hostList;
public static void main(String[] args) {
new VmAllocationPolicyTOPSISandPOWERExample_sherry();
}
private VmAllocationPolicyTOPSISandPOWERExample_sherry(){
//Log.setLevel(Level.WARN);
simulation = new CloudSim();
hostList = new ArrayList<>(HOSTS);
datacenter0 = createDatacenterSimple();
//Creates a broker that is a software acting on behalf of a cloud customer to manage his/her VMs and Cloudlets
broker0 = new DatacenterBrokerSimple(simulation);
vmList = createVms();
cloudletList = createCloudlets();
broker0.submitVmList(vmList);
broker0.submitCloudletList(cloudletList);
simulation.start();
System.out.println("------------------------------- SIMULATION FOR SCHEDULING INTERVAL = " + SCHEDULING_INTERVAL+" -------------------------------");
final List<Cloudlet> finishedCloudlets = broker0.getCloudletFinishedList();
final Comparator<Cloudlet> hostComparator = comparingLong(cl -> cl.getVm().getHost().getId());
finishedCloudlets.sort(hostComparator.thenComparing(cl -> cl.getVm().getId()));
new CloudletsTableBuilder(finishedCloudlets).build();
printHostsCpuUtilizationAndPowerConsumption();
}
/**
* The Host CPU Utilization History is only computed
* if VMs utilization history is enabled by calling
* {@code vm.getUtilizationHistory().enable()}.
*/
private void printHostsCpuUtilizationAndPowerConsumption() {
System.out.println();
for (final Host host : hostList) {
printHostCpuUtilizationAndPowerConsumption(host);
}
System.out.println();
}
private void printHostCpuUtilizationAndPowerConsumption(final Host host) {
final HostResourceStats cpuStats = host.getCpuUtilizationStats();
//The total Host's CPU utilization for the time specified by the map key
final double utilizationPercentMean = cpuStats.getMean();
final double watts = host.getPowerModel().getPower(utilizationPercentMean);
System.out.printf(
"Host %2d CPU Usage mean: %6.1f%% | Power Consumption mean: %8.0f W%n",
host.getId(), utilizationPercentMean * 100, watts);
}
/**
* Creates a {@link Datacenter} and its {@link Host}s.
*/
private Datacenter createDatacenterSimple() {
for(int i = 0; i < HOSTS; i++) {
Host host = createPowerHost(i);
hostList.add(host);
}
final Datacenter dc = new DatacenterSimple(simulation, hostList, new VmAllocationPolicyTOPSIS_sherry());
dc.setSchedulingInterval(SCHEDULING_INTERVAL);
return dc;
}
private Host createPowerHost(final int id) {
final List<Pe> peList = new ArrayList<>(HOST_PES);
//List of Host's CPUs (Processing Elements, PEs)
for (int i = 0; i < HOST_PES; i++) {
peList.add(new PeSimple(1000, new PeProvisionerSimple()));
}
final long ram = 2048; //in Megabytes
final long bw = 10000; //in Megabits/s
final long storage = 1000000; //in Megabytes
final ResourceProvisioner ramProvisioner = new ResourceProvisionerSimple();
final ResourceProvisioner bwProvisioner = new ResourceProvisionerSimple();
final VmScheduler vmScheduler = new VmSchedulerTimeShared();
final Host host = new HostSimple(ram, bw, storage, peList);
final PowerModelHost powerModel = new PowerModelHostSimple(MAX_POWER, STATIC_POWER);
host
.setRamProvisioner(ramProvisioner)
.setBwProvisioner(bwProvisioner)
.setVmScheduler(vmScheduler)
.setPowerModel(powerModel);
host.setId(id);
host.enableUtilizationStats();
return host;
}
/**
* Creates a list of VMs.
*/
private List<Vm> createVms() {
final List<Vm> list = new ArrayList<>(VMS);
int VM_PES= getRandomVmPe(5);
for (int i = 0; i < VMS; i++) {
Vm vm = new VmSimple(i, 1000, VM_PES);
vm.setRam(512).setBw(1000).setSize(10000)
.setCloudletScheduler(new CloudletSchedulerTimeShared());
vm.enableUtilizationStats();
list.add(vm);
}
return list;
}
public int getRandomVmPe(final int maxValue){
Random rand=new Random();
//设Vm的Pe取值范围为[4,maxValue]间的随机数
int vm_pe=rand.nextInt(maxValue-4+1)+4;
return vm_pe;
}
/**
* Creates a list of Cloudlets.
*/
private List<Cloudlet> createCloudlets() {
final List<Cloudlet> list = new ArrayList<>(CLOUDLETS);
final UtilizationModel utilization = new UtilizationModelDynamic(0.2);
for (int i = 0; i < CLOUDLETS; i++) {
//Sets half of the cloudlets with the defined length and the other half with the double of it
final long length = i < CLOUDLETS / 2 ? CLOUDLET_LENGTH : CLOUDLET_LENGTH * 2;
Cloudlet cloudlet =
new CloudletSimple(i, length, CLOUDLET_PES)
.setFileSize(1024)
.setOutputSize(1024)
.setUtilizationModelCpu(new UtilizationModelFull())
.setUtilizationModelRam(utilization)
.setUtilizationModelBw(utilization);
list.add(cloudlet);
}
return list;
}
//=========================================form here is TOPSIS================================================================
public static class VmAllocationPolicyTOPSIS_sherry extends VmAllocationPolicyAbstract implements VmAllocationPolicy {
long startTime = 0; //记录开始时间
long endTime = 0; //记录终止时间
long allTime = 0; //记录总时间
@Override
protected Optional<Host> defaultFindHostForVm(final Vm vm) {
final List<Host> hostList = getHostList();
Host temp = null;
for (Host host : hostList) {
HostResourceStats cpuUtilizationStats = host.getCpuUtilizationStats();
host.getBwUtilization();
host.getRamUtilization();
}
startTime = System.currentTimeMillis();
// 创建host的数据矩阵,作为TOPSIS的输入.共4列,第一列为hostid,其余为3个评判指标
// hostData矩阵的存储形为:
// host_id | availability | load_balance | similarity
HostMatrix hostMatrix=createData(hostList,vm);
// start TOPSIS,get result matrix
double result[]=TOPSIS(hostMatrix);
// 选出得分最高的主机
int bestHostId= getBestHostId(result);
Host host=hostList.get(bestHostId);
endTime=System.currentTimeMillis();
allTime=endTime-startTime;
if (host.isSuitableForVm(vm)){
temp=host;
}
return temp == null ? Optional.empty() :Optional.of(temp);
}
}
private static int getBestHostId(double[] result){
double max=result[0];
int best=0;
for (int i=1;i<result.length;i++){
if (result[i]>max){
max=result[i];
best=i;
}
}
return best;
}
private static double[] TOPSIS(HostMatrix hostData){
//第一步:消除纲量,数据标准化处理
HostMatrix standardMatrix=standard(hostData);
//加权需求由客户提出
//只需提供weight[target_nums]的一维数组即可
//第二步:确定正理想解和负理想解,再根据公式获得每个主机的综合得分
double result[]=getScore(standardMatrix);
return result;
}
private static HostMatrix standard(HostMatrix hostData){
int row,column;
int num=hostData.getHostnum(hostData);
int target=hostData.getTargetnum(hostData);
double standard[][] = new double[num][target];
HostMatrix standardMatrix = new HostMatrix(num,target,standard);
//消除纲量,数据标准化处理
double down[] = new double[target];
double value,value2,value_sum;
for (column=1;column<target;column++){
value_sum=0;
for (row=0;row<num;row++){
value=hostData.getMatrix(row,column);
value2=Math.pow(value,2);
value_sum+=value2;
}
down[column]=Math.sqrt(value_sum);
}
for (row=0;row<num;row++){
for (column=0;column<target;column++){
if (column==0){
standardMatrix.setMatrix(row,column,row);//hostid
System.out.print(row+" ");
}
else{
value=hostData.getMatrix(row,column)/down[column];
standardMatrix.setMatrix(row,column,value);
System.out.print(value+" ");
}
}
System.out.println();
}
return standardMatrix;
}
private static double[] getScore(HostMatrix standardMaxtrix){
int num=standardMaxtrix.getHostnum(standardMaxtrix);
int col=standardMaxtrix.getTargetnum(standardMaxtrix);
int row,column;
//Step1:确定正、负理想解(获取每个指标的最大值和最小值)
double max_targets[]=new double[col];
double min_targets[]=new double[col];
double max,min,value;
for (column=1;column<col;column++){
max=standardMaxtrix.getMatrix(0,column);
min=standardMaxtrix.getMatrix(0,column);
for (row=1;row<num;num++){
value=standardMaxtrix.getMatrix(row,column);
if (value>max) max=value;
if (value<min) min=value;
}
max_targets[column]=max;
min_targets[column]=min;
}
//Step2:计算得分
double DistanceToMax;
double DistanceToMin;
double host_score;
double score[] =new double[num]; //存放第i个评价对象的得分
double distance_max,distance_min,value_max,value_min;
for (row=0;row<num;row++){
distance_max=0;
distance_min=0;
for (column=1;column<num;column++){
value_max=standardMaxtrix.getMatrix(row,column)-max_targets[column];
distance_max+=Math.pow(value_max,2);
value_min=standardMaxtrix.getMatrix(row,column)-min_targets[column];
distance_min+=Math.pow(value_min,2);
}
//计算所有host的data到正、负理想解的距离
DistanceToMax=Math.sqrt(distance_max);
DistanceToMin=Math.sqrt(distance_min);
host_score=DistanceToMin/(DistanceToMax+DistanceToMin);
score[row]=host_score;
}
return score;
}
private static HostMatrix createData(List<Host> hostList, Vm vm){
int PeSum = 0;
long BwSum = 0;
long RamSum = 0;
for (int i = 0; i < hostList.size(); i++) {
PeSum += hostList.get(i).getBusyPesNumber();
BwSum += hostList.get(i).getBw().getAllocatedResource();
RamSum += hostList.get(i).getRam().getAllocatedResource();
}
//记录数据中心 Pe、Bw、Ram均值
double PeAver = PeSum / hostList.size();
double BwAver = BwSum / hostList.size();
double RamAver = RamSum / hostList.size();
System.out.println(BwAver);
int Matrix_row=hostList.size();
int Matrix_column=4; //矩阵共4列,第一列为hostid,其余为3个评判指标
double hostData[][] = new double[Matrix_row][Matrix_column];
HostMatrix hostMatrix = new HostMatrix(Matrix_row,Matrix_column,hostData);
// hostData矩阵的存储形为:
// host_id | availability | load_balance | similarity
for (int row=0;row < Matrix_row; row++){
hostMatrix.setMatrix(row,0,row);
hostMatrix.setMatrix(row,1,availability(hostList,row,vm));
hostMatrix.setMatrix(row,2,load_balance(hostList,row,PeAver,BwAver,RamAver));
hostMatrix.setMatrix(row,3,similarity(hostList,row,vm));
}
return hostMatrix;
}
//以下为评价指标:
//可用性
private static double availability(List<Host> hostList,int id,Vm vm){
long vmBw = vm.getBw().getCapacity();
long vmRam = vm.getRam().getCapacity();
long vmSize = vm.getStorage().getCapacity();
long bw = hostList.get(id).getBw().getAvailableResource();
long ram = hostList.get(id).getRam().getAvailableResource();
long storage = hostList.get(id).getStorage().getAvailableResource();
double distence = Math.sqrt(Math.pow(vmBw-bw,2) + Math.pow(vmRam-ram,2) + Math.pow(vmSize-storage,2));
return distence;
}
//负载均衡
private static double load_balance(List<Host> hostList,int id,double PeAver,double BwAver,double RamAver){
long bw = hostList.get(id).getBw().getAvailableResource();
long ram = hostList.get(id).getRam().getAvailableResource();
long pe = hostList.get(id).getBusyPesNumber();
double load = Math.sqrt(Math.pow(ram-RamAver,2) + Math.pow(bw-BwAver,2) + Math.pow(pe-PeAver,2));
return load;
}
//相似性
//极小型指标
private static double similarity(List<Host> hostList,int id,Vm vm){
long vmBw = vm.getBw().getCapacity();
long vmRam = vm.getRam().getCapacity();
long vmPe = vm.getNumberOfPes();
Host host = hostList.get(id);
double similarity = 0;
System.out.println(hostList.get(id).getRam().getAllocatedResource());
if(host.getRam().getAllocatedResource()!= 0 && host.getBw().getAllocatedResource() != 0&& host.getBusyPesNumber() != 0){
similarity = (vmRam / host.getRam().getAllocatedResource()) + (vmBw / host.getBw().getAllocatedResource()) + (vmPe / host.getBusyPesNumber());
if (similarity > 0.7) similarity = 1; //若太相似则放弃改主机;
}
//由于相似性是极小型指标,即值越小越好
//需对极小型指标做正向化处理,此处用取反的方法
System.out.println(similarity);
return -similarity;
}
}
//定义host矩阵类存放3个指标的值
class HostMatrix{
private int row;//行
private int col;//列
double [][]Data;
public HostMatrix(int row, int col,double [][]Data) {
this.row = row;
this.col = col;
this.Data = Data;
}
public void setMatrix(int row , int col, double value) {
this.Data[row][col] = value;
}
public double getMatrix(int row, int col) {
return Data[row][col] ;
}
public int getHostnum(HostMatrix hostMatrix){
return hostMatrix.Data.length;
}
public int getTargetnum(HostMatrix hostMatrix){
return hostMatrix.Data[0].length;
}
}
更多推荐
已为社区贡献1条内容
所有评论(0)