创建可视化网页四 : 虚拟机中Hive的安装与配置 , 并测试其是否安装成功
/启动mapreduce。
引入 : hive-2.1.0的安装包
一.安装配置hive
1.启动相关进程 , 进行解压安装
//打开虚拟机时 , 先启动所有进程
[root@hadoop ~]# jps
10111 Jps
[root@hadoop ~]# start-all.sh
[root@hadoop ~]# jps
10544 SecondaryNameNode
10723 ResourceManager
10249 NameNode
10825 NodeManager
11212 Jps
10351 DataNode
//启动mysql
[root@hadoop ~]# service mysql start
Starting MySQL SUCCESS!
[root@hadoop ~]# 2024-05-19T10:35:28.535241Z mysqld_safe A mysq
mysql -uroot -p
Enter password:
mysql> exit;
Bye
[root@hadoop ~]# systemctl stop firewalld
//关闭防火墙
[root@hadoop ~]# start-yarn.sh
//启动mapreduce
[root@hadoop ~]# cd /usr/soft
//解压hive的安装包
[root@hadoop soft]# tar -zxvf apache-hive-2.1.0-bin.tar.gz
//解压
[root@hadoop soft]# ls
apache-hive-2.1.0-bin hadoop mysql5.7
apache-hive-2.1.0-bin.tar.gz jdk
[root@hadoop soft]# rm -rf apache-hive-2.1.0-bin.tar.gz
//删除压缩包
[root@hadoop soft]# ls
apache-hive-2.1.0-bin hadoop jdk mysql5.7
[root@hadoop soft]# mv apache-hive-2.1.0-bin/ hive
//改名为hive
[root@hadoop soft]# ls
hadoop hive jdk mysql5.7
2.相关配置
//配置环境变量
[root@hadoop soft]# vim /etc/profile.d/hive.sh
[root@hadoop profile.d]# cat hive.sh
HIVE_HOME=/usr/soft/hive
PATH=
P
A
T
H
:
PATH:
PATH:HIVE_HOME/bin
CLASSPATH=
C
L
A
S
S
P
A
T
H
:
CLASSPATH:
CLASSPATH:HIVE_HOME/lib
export HIVE_HOME PATH CLASSPATH
//source一下,让环境变量的配置生效
[root@hadoop profile.d]# source /etc/profile.d/hive.sh
//修改hive-site.xml 文件
[root@hadoop profile.d]# cd /usr/soft/hive/conf
[root@hadoop conf]# cat hive-site.xml
- hive-site.xml 文件
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:mysql://localhost:3306/hive?useUnicode=true&characterEncoding=utf8&useSSL=false&createDatabaseIfNotExist=true</value>
</property>
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.jdbc.Driver</value>
</property>
<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>root</value>
</property>
<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>1234</value>
</property>
</<configuration>>
//在xftp中将mysql的驱动包传到 /usr/soft/hive/lib目录下
- mysql驱动包下载到 /usr/soft/hive/lib目录下
//然后初始化元数据
[root@hadoop lib]# schematool -dbType mysql -initSchema
//这时数据库就会有些变动(更新了) , 我们可以查看一下
[root@hadoop lib]# mysql -uroot -p
mysql> show databases;
//…
5 rows in set (0.01 sec)
mysql> use hive;
mysql> show tables;
//…
57 rows in set (0.00 sec)
- 查看mysql
二.测试是否成功安装Hiv
1.导入数据
//先创建一个文件 , 存放点数据
[root@hadoop ~]# cd /usr/
[root@hadoop usr]# mkdir data
[root@hadoop usr]# cd data
[root@hadoop data]# vim student.txt
[root@hadoop data]# cat student.txt
95002,刘晨,女,19,IS
95017,王风娟,女,18,IS
95018,王一,女,19,IS
95013,冯伟,男,21,CS
95014,王小丽,女,19,CS
95019,邢小丽,女,19,IS
95020,赵钱,男,21,IS
95003,王敏,女,22,MA
95004,张立,男,19,IS
95012,孙花,女,20,CS
95010,孔小涛,男,19,CS
95005,刘刚,男,18,MA
95006,孙庆,男,23,CS
95007,易思玲,女,19,MA
95008,李娜,女,18,CS
95021,周二,男,17,MA
95022,郑明,男,20,MA
95001,李勇,男,20,CS
95011,包小柏,男,18,MA
95009,梦圆圆,女,18,MA
95015,王君,男,18,MA
//将文件 上传到hdfs中
[root@hadoop data]# hdfs dfs -put student.txt /
[root@hadoop data]# hdfs dfs -ls /
Found 2 items
-rw-r–r-- 1 root supergroup 504 2024-05-27 09:56 /student.txt
drwx-wx-wx - root supergroup 0 2024-05-19 21:18 /tmp
2.在hive中执行数据操作
//打开hive
[root@hadoop ~]# hive
hive> show databases;
OK
default
Time taken: 1.361 seconds, Fetched: 1 row(s)
//创建一个数据库
hive> create database myhive;
OK
Time taken: 0.583 seconds
hive> show databases;
OK
default
myhive
Time taken: 0.022 seconds, Fetched: 2 row(s)
hive> use myhive;
OK
Time taken: 0.047 seconds
//创建一个student的表
hive> create table student(id int, name string, sex string, age int, department string) row format delimited fields terminated by ",";
OK
Time taken: 0.158 seconds
//执行数据加载
hive> load data inpath "/student.txt" into table student;
Loading data to table myhive.student
OK
Time taken: 0.964 seconds
//此时,数据导入到表中 , 可以使用hive进行表操作了
hive> select * from student;
OK
95002 刘晨 女 19 IS
95017 王风娟 女 18 IS
95018 王一 女 19 IS
95013 冯伟 男 21 CS
95014 王小丽 女 19 CS
95019 邢小丽 女 19 IS
95020 赵钱 男 21 IS
95003 王敏 女 22 MA
95004 张立 男 19 IS
95012 孙花 女 20 CS
95010 孔小涛 男 19 CS
95005 刘刚 男 18 MA
95006 孙庆 男 23 CS
95007 易思玲 女 19 MA
95008 李娜 女 18 CS
95021 周二 男 17 MA
95022 郑明 男 20 MA
95001 李勇 男 20 CS
95011 包小柏 男 18 MA
95009 梦圆圆 女 18 MA
95015 王君 男 18 MA
Time taken: 1.905 seconds, Fetched: 21 row(s)
//计算平均年龄 ----> hive去调用了mapreduce
hive> select avg(age) from student;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = root_20240527102934_25490751-a0bb-48aa-9f5e-79f3426a66d8
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
Starting Job = job_1716114831307_0001, Tracking URL = http://hadoop:8088/proxy/application_1716114831307_0001/
Kill Command = /usr/soft/hadoop/bin/hadoop job -kill job_1716114831307_0001
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2024-05-27 10:30:07,243 Stage-1 map = 0%, reduce = 0%
2024-05-27 10:30:21,672 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 3.16 sec
2024-05-27 10:30:31,669 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 5.24 sec
MapReduce Total cumulative CPU time: 5 seconds 240 msec
Ended Job = job_1716114831307_0001
MapReduce Jobs Launched:
Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 5.24 sec HDFS Read: 9204 HDFS Write: 118 SUCCESS
Total MapReduce CPU Time Spent: 5 seconds 240 msec
OK
19.285714285714285
Time taken: 59.164 seconds, Fetched: 1 row(s)
更多推荐
所有评论(0)