搭建Hadoop完全分布式集群2
https://blog.csdn.net/m0_59186440/article/details/122170209https://blog.csdn.net/m0_59186440/article/details/122170209前文链接前面一节我们完成了虚拟机的安装,下面我们进行配置vi /etc/sysconfig/network-scripts/ifcfg-eth0DEVICE=eth
前面一节我们完成了虚拟机的安装,下面我们进行配置
vi /etc/sysconfig/network-scripts/ifcfg-eth0
DEVICE=eth0
HWADDR=00:0C:29:16:AB:34
TYPE=Ethernet
#UUID=07c5088c-f83e-4e84-b2cb-32ae75117085
ONBOOT=yes
NM_CONTROLLED=yes
BOOTPROTO=static
IPADDR=192.168.106.131
NETMASK=255.255.255.0
GATEWAY=192.168.106.2
DNS1=192.168.106.2
重启网络
service network restart
连接xshell
二、安装yum软件
1. 进入yum配置文件夹
cd /etc/yum.repos.d/
修改之前的文件名
mv CentOS-Base.repo CentOS-Base.repo.bak
2.下载最新网络源
(注:如果命令运行失败,请自行搜索另外找一个运行)
curl -o /etc/yum.repos.d/CentOS-Base.repo http://file.kangle.odata.cc/repo/Centos-6.repo
3.挂载镜像
mount /dev/dvd /media/
4.安装上传软件
yum install lrzsz –y
5.安装vim软件
yum install vim -y
三、安装JDK
1.上传jdk-8u121-linux-x64.tar.gz文件到/opt目录
jdk下载地址
2.解压jdk文件
tar -zxvf jdk-8u121-linux-x64.tar.gz -C /usr/local
3.配置环境变量
vim /etc/profile
export JAVA_HOME=/usr/local/jdk1.8.0_121
export PATH=$JAVA_HOME/bin:$PATH
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
4.环境变量生效
source /etc/profile
5.检查jdk是否安装成功
java -version
四、搭建hadoop
1. 上传hadoop-2.7.4.tar.gz文件到/opt目录
下载地址版本2.7.4
2. 解压缩hadoop-2.7.4.tar.gz 文件
tar -zxvf hadoop-2.7.4.tar.gz -C /usr/local
解压后即可,看到/usr/local/hadoop-2.7.4文件夹
3.配置环境变量
vim /etc/profile
export HADOOP_HOME=/export/servers/hadoop-2.7.4
export PATH=$PATH:$HADOOP_HOME/bin:
$HADOOP_HOME/sbin
初始化环境变量
source /etc/profile
验证Hadoop是否成功安装配置,命令如下
hadoop version
hadoop-env.sh | 配置Hadoop运行所需的环境变量 |
yarn-env.sh | 配置Yarn运行所需的环境变量 |
core-site.xml | 集群全局参数,用于定义系统级别的参数,如HDFS URL、Hadoop的临时目录等 |
hdfs-site.xml | HDFS参数,如名称节点和数据节点的存放位置、文件副本的个数、文件读取的权限等 |
mapred-site.xml | MapReduce参数,包括JobHistory Server和应用程序参数两部分,如reduce任务的默认个数、任务所能够使用内存的默认上下限等 |
yarn-site.xml | 集群资源管理系统参数,配置ResourceManager,NodeManager的通信端口,web监控端口等 |
(在底部Configuration标签内添加以下Configuration标签内的内容,其他文件也是)
1.core-site.xml配置·
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://master:8020</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/var/log/hadoop/tmp</value>
</property>
</configuration>
2.hadoop-env.sh配置
export JAVA_HOME=/usr/local/jdk1.8.0_121
3.yarn-env.sh配置
export JAVA_HOME=/usr/local/jdk1.8.0_121
4.mapred-site.xml配置
复制cp mapred-site.xml.template mapred-site.xml
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<!-- jobhistory properties -->
<property>
<name>mapreduce.jobhistory.address</name>
<value>master:10020</value>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>master:19888</value>
</property>
</configuration>
5.yarn-site.xml配置
<configuration>
<property>
<name>yarn.resourcemanager.hostname</name>
<value>master</value>
</property>
<property>
<name>yarn.resourcemanager.address</name>
<value>${yarn.resourcemanager.hostname}:8032</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>${yarn.resourcemanager.hostname}:8030</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address</name>
<value>${yarn.resourcemanager.hostname}:8088</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.https.address</name>
<value>${yarn.resourcemanager.hostname}:8090</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>${yarn.resourcemanager.hostname}:8031</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address</name>
<value>${yarn.resourcemanager.hostname}:8033</value>
</property>
<property>
<name>yarn.nodemanager.local-dirs</name>
<value>/data/hadoop/yarn/local</value>
</property>
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>
<property>
<name>yarn.nodemanager.remote-app-log-dir</name>
<value>/data/tmp/logs</value>
</property>
<property>
<name>yarn.log.server.url</name>
<value>http://master:19888/jobhistory/logs/</value>
<description>URL for job history server</description>
</property>
<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>2048</value>
</property>
<property>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>512</value>
</property>
<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>4096</value>
</property>
<property>
<name>mapreduce.map.memory.mb</name>
<value>2048</value>
</property>
<property>
<name>mapreduce.reduce.memory.mb</name>
<value>2048</value>
</property>
<property>
<name>yarn.nodemanager.resource.cpu-vcores</name>
<value>1</value>
</property>
</configuration>
6.hdfs-site.xml配置
<configuration>
<property>
<name>dfs.namenode.name.dir</name>
<value>file:///data/hadoop/hdfs/name</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>file:///data/hadoop/hdfs/data</value>
</property>
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>master:50090</value>
</property>
<property>
<name>dfs.replication</name>
<value>3</value>
</property>
</configuration>
---------------- 以上master节点配置完成 -------------
更多推荐
所有评论(0)