kubernetes(k8s v1.15.0)+Docker(v18.0)+Springboot2.2的jar的项目安装+部署入门全演练
文章目录一 写在前面1、我的项目结构图2、k8s的基础知识(如果没兴趣可以跳到实际操作)配置两台虚拟机master和slave节点的虚拟机安装docker一 写在前面kubernetes有人认为名字太长,k + ubernetes + s,中间刚刚为8个字母,有人为了省事,干脆就叫做 k8s,下文所有的kubernetes均统一称为k8s1、我的项目结构图注意点:该项目我是用2台虚拟机,每...
文章目录
一 写在前面
kubernetes有人认为名字太长,k + ubernetes + s,中间刚刚为8个字母,有人为了省事,干脆就叫做 k8s,下文所有的kubernetes均统一称为k8s
1、我的项目结构图
注意点:该项目我是用2台虚拟机,每台虚拟机内存必须为2G以上,不然会出现很大问题,因为k8s的某些pod运行需要的内存很多。
版本:
- k8s版本为: v1.15,满足2020年前的所有应用
- docker版本为:18
2、k8s的基础知识(如果没兴趣可以跳到实际操作)
以上为k8s的结构图,作为初学者,我们需要关注的点为:
- 一个master,多个node,我这个案例只有一个node
- 需要docker提供镜像
- 通过api可以提供用户接口和命令接口
作为初学者,我们从上面的图看到的信息有:
主机 | IP地址 | 角色 | 组件 |
---|---|---|---|
k8s-master | 192.168.102.11 | master | kube-scheduler, kube-controller-manager, etcd, kube-apiserver |
k8s-master | 192.168.102.12 | node1 | kube-proxy |
二、配置两台虚拟机
master和slave节点的虚拟机
- master和slave节点虚拟机修改名字
-
1.1 master修改centos7的名字
hostnamectl set-hostname k8s-master
修改完需要重启计算机 -
1.2 Slave修改centos7的名字
hostnamectl set-hostname k8s-node1
- master和slave节点虚拟机修改固定ip地址(不懂可以百度)
-
2.1 master修改固定ip
vi /etc/sysconfig/network-scripts/ifcfg-ens33
重启网络 service network restart -
2.2 slave修改固定ip
vi /etc/sysconfig/network-scripts/ifcfg-ens33
...
BOOTPROTO="static"
...
IPADDR=192.168.102.12
NETMASK=255.255.255.0
GATEWAY=192.168.102.2
DNS1=8.8.8.8
BROADCAST=192.168.102.255
重启网络 service network restart
- 修改/etc/hosts文件, master和slave节点虚拟机一起修改
cat >> /etc/hosts << EOF
192.168.102.11 k8s-master
192.168.102.12 k8s-node1
EOF
- 关闭防火墙, master和slave节点虚拟机一起修改
systemctl stop firewalld && systemctl disable firewalld
- 关闭swap, master和slave节点虚拟机一起修改
swapoff -a
yes | cp /etc/fstab /etc/fstab_bak
cat /etc/fstab_bak |grep -v swap > /etc/fstab
- 修改iptables相关参数, master和slave节点虚拟机一起修改
CentOS 7上的一些用户报告了由于iptables被绕过而导致流量路由不正确的问题。创建/etc/sysctl.d/k8s.conf文件,添加如下内容:
cat <<EOF > /etc/sysctl.d/k8s.conf
vm.swappiness = 0
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
net.ipv4.ip_forward = 1
EOF
- 使配置生效
modprobe br_netfilter
sysctl -p /etc/sysctl.d/k8s.conf
安装docker, master和slave节点虚拟机一起安装
- 安装要求的软件包
yum install -y yum-utils device-mapper-persistent-data lvm2
2. 添加Docker repository,这里改为国内阿里云repo,
yum-config-manager \
--add-repo \
http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
- 安装docker
yum install -y docker-ce-18.06.0.ce-3.el7
- 创建daemon.json配置文件
注意,这里这指定了cgroupdriver=systemd,另外由于国内拉取镜像较慢,最后追加了阿里云镜像加速配置。
以下命令可以一次性复制粘贴运行
mkdir /etc/docker
cat > /etc/docker/daemon.json <<EOF
{
"exec-opts": ["native.cgroupdriver=systemd"],
"log-driver": "json-file",
"log-opts": {
"max-size": "100m"
},
"storage-driver": "overlay2",
"storage-opts": [
"overlay2.override_kernel_check=true"
],
"registry-mirrors": ["https://uyah70su.mirror.aliyuncs.com"]
}
EOF
mkdir -p /etc/systemd/system/docker.service.d
- 重启docker服务
systemctl daemon-reload && systemctl restart docker && systemctl enable docker
- 查看docker是否安装成功
docker version
安装kubeadm、kubelet、kubectl,master和slave节点虚拟机一起安装
- kubelet:在群集中所有节点上运行的核心组件, 用来执行如启动pods和containers等操作。
- kubeadm:引导启动k8s集群的命令行工具,用于初始化 Cluster。
- kubectl 是 Kubernetes 命令行工具。通过 kubectl 可以部署和管理应用,查看各种资源,创建、删除和更新各种组件。
- 配置kubernetes.repo的源,由于官方源国内无法访问,这里使用阿里云yum源
cat <<EOF > /etc/yum.repos.d/kubernetes.repo
[kubernetes]
name=Kubernetes
baseurl=https://mirrors.aliyun.com/kubernetes/yum/repos/kubernetes-el7-x86_64/
enabled=1
gpgcheck=1
repo_gpgcheck=1
gpgkey=https://mirrors.aliyun.com/kubernetes/yum/doc/yum-key.gpg https://mirrors.aliyun.com/kubernetes/yum/doc/rpm-package-key.gpg
EOF
- 在所有节点上安装kubelet、kubeadm 和 kubectl
yum install -y kubelet-1.15.0-0 kubeadm-1.15.0-0 kubectl-1.15.0-0
- 启动kubelet服务
systemctl enable kubelet && systemctl start kubelet
部署master节点
完整的官方文档可以参考:
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/
https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm-init/
- 执行Master节点执行初始化:
kubeadm init \
--apiserver-advertise-address=192.168.102.11 \
--image-repository registry.aliyuncs.com/google_containers \
--kubernetes-version v1.15.0 \
--pod-network-cidr=10.244.0.0/16
- 1.1 运行以上命令,开始运行
[root@k8s-master ~]# kubeadm init \
> --apiserver-advertise-address=192.168.102.11 \
> --image-repository registry.aliyuncs.com/google_containers \
> --kubernetes-version v1.15.0 \
> --pod-network-cidr=10.244.0.0/16
[init] Using Kubernetes version: v1.15.0
[preflight] Running pre-flight checks
[preflight] Pulling images required for setting up a Kubernetes cluster
[preflight] This might take a minute or two, depending on the speed of your internet connection
[preflight] You can also perform this action in beforehand using 'kubeadm config images pull'
[kubelet-start] Writing kubelet environment file with flags to file "/var/lib/kubelet/kubeadm-flags.env"
[kubelet-start] Writing kubelet configuration to file "/var/lib/kubelet/config.yaml"
[kubelet-start] Activating the kubelet service
[certs] Using certificateDir folder "/etc/kubernetes/pki"
[certs] Generating "etcd/ca" certificate and key
[certs] Generating "etcd/healthcheck-client" certificate and key
[certs] Generating "apiserver-etcd-client" certificate and key
[certs] Generating "etcd/server" certificate and key
[certs] etcd/server serving cert is signed for DNS names [k8s-master localhost] and IPs [192.168.102.11 127.0.0.1 ::1]
[certs] Generating "etcd/peer" certificate and key
[certs] etcd/peer serving cert is signed for DNS names [k8s-master localhost] and IPs [192.168.102.11 127.0.0.1 ::1]
[certs] Generating "ca" certificate and key
[certs] Generating "apiserver" certificate and key
[certs] apiserver serving cert is signed for DNS names [k8s-master kubernetes kubernetes.default kubernetes.default.svc kubernetes.default.svc.cluster.local] and IPs [10.96.0.1 192.168.102.11]
[certs] Generating "apiserver-kubelet-client" certificate and key
[certs] Generating "front-proxy-ca" certificate and key
[certs] Generating "front-proxy-client" certificate and key
[certs] Generating "sa" key and public key
[kubeconfig] Using kubeconfig folder "/etc/kubernetes"
[kubeconfig] Writing "admin.conf" kubeconfig file
[kubeconfig] Writing "kubelet.conf" kubeconfig file
[kubeconfig] Writing "controller-manager.conf" kubeconfig file
[kubeconfig] Writing "scheduler.conf" kubeconfig file
[control-plane] Using manifest folder "/etc/kubernetes/manifests"
[control-plane] Creating static Pod manifest for "kube-apiserver"
[control-plane] Creating static Pod manifest for "kube-controller-manager"
[control-plane] Creating static Pod manifest for "kube-scheduler"
[etcd] Creating static Pod manifest for local etcd in "/etc/kubernetes/manifests"
[wait-control-plane] Waiting for the kubelet to boot up the control plane as static Pods from directory "/etc/kubernetes/manifests". This can take up to 4m0s
[apiclient] All control plane components are healthy after 23.503985 seconds
[upload-config] Storing the configuration used in ConfigMap "kubeadm-config" in the "kube-system" Namespace
[kubelet] Creating a ConfigMap "kubelet-config-1.15" in namespace kube-system with the configuration for the kubelets in the cluster
[upload-certs] Skipping phase. Please see --upload-certs
[mark-control-plane] Marking the node k8s-master as control-plane by adding the label "node-role.kubernetes.io/master=''"
[mark-control-plane] Marking the node k8s-master as control-plane by adding the taints [node-role.kubernetes.io/master:NoSchedule]
[bootstrap-token] Using token: ykt5ca.46u2ps8pvruc4xtf
[bootstrap-token] Configuring bootstrap tokens, cluster-info ConfigMap, RBAC Roles
[bootstrap-token] configured RBAC rules to allow Node Bootstrap tokens to post CSRs in order for nodes to get long term certificate credentials
[bootstrap-token] configured RBAC rules to allow the csrapprover controller automatically approve CSRs from a Node Bootstrap Token
[bootstrap-token] configured RBAC rules to allow certificate rotation for all node client certificates in the cluster
[bootstrap-token] Creating the "cluster-info" ConfigMap in the "kube-public" namespace
[addons] Applied essential addon: CoreDNS
[addons] Applied essential addon: kube-proxy
Your Kubernetes control-plane has initialized successfully!
To start using your cluster, you need to run the following as a regular user:
mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config
You should now deploy a pod network to the cluster.
Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at:
https://kubernetes.io/docs/concepts/cluster-administration/addons/
Then you can join any number of worker nodes by running the following on each as root:
kubeadm join 192.168.102.11:6443 --token ykt5ca.46u2ps8pvruc4xtf \
--discovery-token-ca-cert-hash sha256:987a9babb3c0ab5ec79d15358918ef656918dd486772b822fe317fcc45fe7c5f
- 1.2 初始化过程说明:(注意记录下初始化结果中的kubeadm join命令,部署worker节点时会用到)
- [preflight] kubeadm 执行初始化前的检查。
- [kubelet-start] 生成kubelet的配置文件”/var/lib/kubelet/config.yaml”
- [certificates] 生成相关的各种token和证书
- [kubeconfig] 生成 KubeConfig 文件,kubelet 需要这个文件与 Master 通信
- [control-plane] 安装 Master 组件,会从指定的 Registry 下载组件的 Docker 镜像。
- [bootstraptoken] 生成token记录下来,后边使用kubeadm join往集群中添加节点时会用到
- [addons] 安装附加组件 kube-proxy 和 kube-dns。
- Kubernetes Master 初始化成功,提示如何配置常规用户使用kubectl访问集群。
- 提示如何安装 Pod 网络。
- 提示如何注册其他节点到 Cluster。
- 1.3 以上的命令,只需要看后半段
注意要把 kubeadm join 192.168.102.11:6443 --token ykt5ca.46u2ps8pvruc4xtf
–discovery-token-ca-cert-hash sha256:987a9babb3c0ab5ec79d15358918ef656918dd486772b822fe317fcc45fe7c5f拷贝下来,Slave节点需要使用
- 配置 kubectl
kubectl 是管理 Kubernetes Cluster 的命令行工具, Master 初始化完成后需要做一些配置工作才能使用kubectl,,这里直接配置root用户:
export KUBECONFIG=/etc/kubernetes/admin.conf
配置普通用户
mkdir -p $HOME/.kube
cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
chown $(id -u):$(id -g) $HOME/.kube/config
- node节点支持kubelet
scp /etc/kubernetes/admin.conf k8s-node1:/etc/kubernetes/admin.conf
export KUBECONFIG=/etc/kubernetes/admin.conf
- 查看集群状态:
[root@k8s-master ~]# kubectl get cs
NAME STATUS MESSAGE ERROR
controller-manager Healthy ok
scheduler Healthy ok
etcd-0 Healthy {"health":"true"}
- kubectl get nodes(发现状态有问题,以下解决)
NAME STATUS ROLES AGE VERSION
k8s-master NotReady master 7m15s v1.15.0
部署网络插件(发现镜像下载不了,可以评论回复,我可以帮组你)
要让 Kubernetes Cluster 能够工作,必须安装 Pod 网络,否则 Pod 之间无法通信。
Kubernetes 支持多种网络方案,这里我们使用 flannel
[root@k8s-master ~]# kubectl apply -f https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml
podsecuritypolicy.policy/psp.flannel.unprivileged created
clusterrole.rbac.authorization.k8s.io/flannel created
clusterrolebinding.rbac.authorization.k8s.io/flannel created
serviceaccount/flannel created
configmap/kube-flannel-cfg created
daemonset.apps/kube-flannel-ds-amd64 created
daemonset.apps/kube-flannel-ds-arm64 created
daemonset.apps/kube-flannel-ds-arm created
daemonset.apps/kube-flannel-ds-ppc64le created
daemonset.apps/kube-flannel-ds-s390x created
部署完成后,我们可以通过 kubectl get 重新检查 Pod 的状态:
[root@k8s-master ~]# kubectl get pod -n kube-system -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
coredns-bccdc95cf-dzmmt 1/1 Running 0 14m 10.244.0.2 k8s-master <none> <none>
coredns-bccdc95cf-rcbkg 1/1 Running 0 14m 10.244.0.3 k8s-master <none> <none>
etcd-k8s-master 1/1 Running 0 13m 192.168.102.11 k8s-master <none> <none>
kube-apiserver-k8s-master 1/1 Running 0 13m 192.168.102.11 k8s-master <none> <none>
kube-controller-manager-k8s-master 1/1 Running 0 13m 192.168.102.11 k8s-master <none> <none>
kube-flannel-ds-amd64-p64h2 1/1 Running 0 4m10s 192.168.102.11 k8s-master <none> <none>
kube-proxy-zm5jw 1/1 Running 0 14m 192.168.102.11 k8s-master <none> <none>
kube-scheduler-k8s-master 1/1 Running 0 13m 192.168.102.11 k8s-master <none> <none>
再查看master的状态(解决了)
[root@k8s-master ~]# kubectl get nodes
NAME STATUS ROLES AGE VERSION
k8s-master Ready master 15m v1.15.0
部署slave节点
去到Salve虚拟机上执行:
Kubernetes 的 Slave节点跟 Master 节点几乎是相同的,它们运行着的都是一个 kubelet 组件。唯一的区别在于,在 kubeadm init 的过程中,kubelet 启动后,Master 节点上还会自动运行 kube-apiserver、kube-scheduler、kube-controller-manger 这三个系统 Pod。
执行如下命令(该命令从master init从获取),将其注册到 Cluster 中:
kubeadm join 192.168.102.11:6443 --token ykt5ca.46u2ps8pvruc4xtf \
--discovery-token-ca-cert-hash sha256:987a9babb3c0ab5ec79d15358918ef656918dd486772b822fe317fcc45fe7c5f
查看slave节点是否加入到master节点
回到master虚拟机执行(需要等待一段时间):
[root@k8s-master ~]# kubectl get nodes
NAME STATUS ROLES AGE VERSION
k8s-master Ready master 23m v1.15.0
k8s-node1 NotReady <none> 2m17s v1.15.0
查看
[root@k8s-master ~]# kubectl get pod -n kube-system -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
coredns-bccdc95cf-dzmmt 1/1 Running 0 25m 10.244.0.2 k8s-master <none> <none>
coredns-bccdc95cf-rcbkg 1/1 Running 0 25m 10.244.0.3 k8s-master <none> <none>
etcd-k8s-master 1/1 Running 0 24m 192.168.102.11 k8s-master <none> <none>
kube-apiserver-k8s-master 1/1 Running 0 24m 192.168.102.11 k8s-master <none> <none>
kube-controller-manager-k8s-master 1/1 Running 0 24m 192.168.102.11 k8s-master <none> <none>
kube-flannel-ds-amd64-dh9bt 0/1 Init:ImagePullBackOff 0 3m55s 192.168.102.12 k8s-node1 <none> <none>
kube-flannel-ds-amd64-p64h2 1/1 Running 0 15m 192.168.102.11 k8s-master <none> <none>
kube-proxy-ts447 1/1 Running 0 3m55s 192.168.102.12 k8s-node1 <none> <none>
kube-proxy-zm5jw 1/1 Running 0 25m 192.168.102.11 k8s-master <none> <none>
kube-scheduler-k8s-master 1/1 Running 0 24m 192.168.102.11 k8s-master <none> <none>
例如,以上有一个状态部署Running,就会有问题,必须全部为Running
# 查看kube-flannel-ds-amd64-dh9bt为什么为 Init:ImagePullBackOff
[root@k8s-master ~]# kubectl describe pods kube-flannel-ds-amd64-dh9bt -n kube-system
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Scheduled 58m default-scheduler Successfully assigned kube-system/kube-flannel-ds-amd64-dh9bt to k8s-node1
Normal Pulling <invalid> (x4 over <invalid>) kubelet, k8s-node1 Pulling image "quay.io/coreos/flannel:v0.12.0-amd64"
Warning Failed <invalid> (x5 over <invalid>) kubelet, k8s-node1 Failed to pull image "quay.io/coreos/flannel:v0.12.0-amd64": rpc error: code = Unknown desc = context canceled
Warning Failed <invalid> (x24 over <invalid>) kubelet, k8s-node1 Error: ImagePullBackOff
Warning Failed <invalid> (x7 over <invalid>) kubelet, k8s-node1 Error: ErrImagePull
Normal BackOff <invalid> (x61 over <invalid>) kubelet, k8s-node1 Back-off pulling image "quay.io/coreos/flannel:v0.12.0-amd64"
发现 kubelet, k8s-node1 Back-off pulling image “quay.io/coreos/flannel:v0.12.0-amd64”,k8s-node节点的镜像没有拉取下来。
回到 k8s-node节点下
docker pull quay.io/coreos/flannel:v0.12.0-amd64
拉取完,可以把两台虚拟机都重启一下,再查看node状态
[root@k8s-master ~]# kubectl get nodes
NAME STATUS ROLES AGE VERSION
k8s-master Ready master 15h v1.15.0
k8s-node1 Ready <none> 14h v1.15.0
注意:如果出现
[root@k8s-master ~]# kubectl get nodes
The connection to the server localhost:8080 was refused - did you specify the right host or port?
再配置一下角色即可
export KUBECONFIG=/etc/kubernetes/admin.conf
以上k8s的最基本配置完成
三、配置jar包和dockerfile
现在环境基本搭建完毕,现在需要运行一个java程序,跑起来
springboot的版本为:2.2.2.RELEASE
- 项目的pom为:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.2.2.RELEASE</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>
<groupId>com.example</groupId>
<artifactId>demo2</artifactId>
<version>0.0.1</version>
<name>demo2</name>
<description>Demo project for Spring Boot</description>
<properties>
<java.version>1.8</java.version>
</properties>
<dependencies>
<!--springboot web模块支持-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
<exclusions>
<exclusion>
<groupId>org.junit.vintage</groupId>
<artifactId>junit-vintage-engine</artifactId>
</exclusion>
</exclusions>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>
</project>
- java代码如下
@SpringBootApplication
@RestController
public class Demo2Application {
public static void main(String[] args) {
SpringApplication.run(Demo2Application.class, args);
}
@Value("${spring.application.name}")
private String name;
@Autowired
private ConfigurableEnvironment environment;
@RequestMapping("/get")
public String get(){
MutablePropertySources propertySources = environment.getPropertySources();
PropertySource<?> propertySources1 = propertySources.get("applicationConfig: [classpath:/application.yml]");
Set set = Collections.singleton(((Map) propertySources1.getSource()));
InetAddress addr = null;
try {
addr = InetAddress.getLocalHost();
} catch (UnknownHostException e) {
e.printStackTrace();
}
System.out.println(addr.getHostAddress());
return "测试成功: "+name+", set: "+set+"ip: "+addr;
}
}
- application.yml
server:
port: 8081
spring:
application:
name: demo2
- 打包为jar包
5. 编写dockerfile
# docker build -t demo2:1.0.0 .
FROM openjdk:8-jre-alpine3.8
RUN \
ln -sf /usr/share/zoneinfo/Asia/Shanghai /etc/localtime && \
echo "Asia/Shanghai" > /etc/timezone && \
mkdir -p /demo2
ADD . /demo2/
ENV JAVA_OPTS="-Duser.timezone=Asia/Shanghai"
EXPOSE 8081
ENV APP_OPTS=""
ENTRYPOINT [ "sh", "-c", "java $JAVA_OPTS -jar /demo2/demo2-0.0.1.jar $APP_OPTS" ]
四、安装镜像
在master和node1都需要安装镜像,也就是执行同样的步骤
cd /usr/local
mkdir demo2
cd demo2
# 把dockerfile和jar包放置在一起
[root@k8s-master demo2]# ll
-rw-r--r--. 1 root root 17592130 4月 6 00:00 demo2-0.0.1.jar
-rw-r--r--. 1 root root 413 4月 6 00:00 Dockerfile
[root@k8s-master demo2]#
五、编写k8s容器编排文件
以下操作,只需要在master节点上
创建 demo2.yaml 文件
---
apiVersion: v1
kind: Service
metadata:
name: can-demo2
namespace: can
labels:
app: can-demo2
spec:
type: NodePort
ports:
- name: demo2
port: 8081
targetPort: 8081
nodePort: 30090 #暴露端口30090
selector:
project: ms
app: demo2
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: can-demo2
namespace: can
spec:
replicas: 2 #副本数量为2,既master和node1
selector:
matchLabels:
project: ms
app: demo2
template:
metadata:
labels:
project: ms
app: demo2
spec:
terminationGracePeriodSeconds: 10 #当删除Pod时,等待时间
containers:
- name: demo2
image: demo2:1.0.0
ports:
- protocol: TCP
containerPort: 8081
env:
- name: APP_NAME
value: "demo2"
- name: POD_NAME
valueFrom:
fieldRef:
fieldPath: metadata.name
- name: APP_OPTS #添加环境变量
value:
"
--spring.application.name=can-demo2
"
resources:
limits:
cpu: 1
memory: 1024Mi
requests:
cpu: 0.5
memory: 125Mi
readinessProbe: #就绪探针
tcpSocket:
port: 8081
initialDelaySeconds: 20 #延迟加载时间
periodSeconds: 5 #重试时间间隔
timeoutSeconds: 10 #超时时间设置
failureThreshold: 5 #探测失败的重试次数
livenessProbe: #存活探针
tcpSocket:
port: 8081
initialDelaySeconds: 60 #延迟加载时间
periodSeconds: 5 #重试时间间隔
timeoutSeconds: 5 #超时时间设置
failureThreshold: 3 #探测失败的重试次数
把以上的yaml文件放置在demo2文件路径下
[root@k8s-master demo2]# cd /usr/local/demo2/
[root@k8s-master demo2]# ll
-rw-r--r--. 1 root root 17592130 4月 6 00:00 demo2-0.0.1.jar
-rw-r--r--. 1 root root 2074 4月 6 00:20 demo2.yaml
-rw-r--r--. 1 root root 413 4月 6 00:00 Dockerfile
六、开始容器编排
- 创建命名空间can
kubectl create namespace can
- 创建service和deployment
[root@k8s-master demo2]# kubectl apply -f demo2.yaml
service/can-demo2 created
deployment.apps/can-demo2 created
- 查看命名空间can下的pod的状态
[root@k8s-master ~]# kubectl get pods -n can -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
can-demo2-5f8dd65f54-m9gnv 1/1 Running 0 3m19s 10.244.1.4 k8s-node1 <none> <none>
can-demo2-5f8dd65f54-x9zzw 1/1 Running 0 3m4s 10.244.1.5 k8s-node1 <none> <none>
记下 ip 为: 10.244.1.4 和 10.244.1.5
- 查看命名空间can下的service的状态
[root@k8s-master demo2]# kubectl get service -n can
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
can-demo2 NodePort 10.100.239.166 <none> 8081:30090/TCP 3m22s
- 通过 192.168.102.11:30090/get 即可访问
测试成功: can-demo2, set: [{server.port=8081, spring.application.name=demo2}]ip: can-demo2-5f8dd65f54-x9zzw/10.244.1.5
七、结语
学习k8s不用急,我上面的案例,如果可以先搭建出来,且看到效果,再慢慢消化原理,有一天,就会成为k8s大神。
本人从事多年的java开发,有问题请留言,有问必回。
本人从事多年的java开发,有问题请留言,有问必回。
更多推荐
所有评论(0)