非虚拟机环境下Ubuntu配置
博主之前专栏中的Ubuntu都安装在虚拟机上,这里博主整了一个双系统,所以要重新配置下Ubuntu的环境,这里简单记录下过程:1.准备好操作系统ubuntu-20.04.2.0-desktop-amd64.iso,U盘启动盘制作工具,启动盘后做好后,便可以从U盘安装。系统起来后的安装步骤和虚拟机下的过程类似,具体可以参考我的博客2.完毕后的操作基本就输更新源、apt update和upgrade下
博主之前专栏中的Ubuntu都安装在虚拟机上,这里博主整了一个双系统,所以要重新配置下Ubuntu的环境,这里简单记录下过程:
1.准备好操作系统ubuntu-20.04.2.0-desktop-amd64.iso,U盘启动盘制作工具,启动盘后做好后,便可以从U盘安装。系统起来后的安装步骤和虚拟机下的过程类似,具体可以参考我的博客
2.完毕后的操作基本就输更新源、apt update和upgrade下、安装aptitude、安装一些必要库、设置下文件夹快速访问路径,常用软件添加到桌面等,可参看博客,由于也需要在此系统上写写博客啥的,所以在此基础上有安装了一个baidupingyin,觉得挺好用的,可以参考此博客。
3.截图工具可以就用Ubuntu自带的Screenshot软件,画图软件可以用Kolourpaint
sudo apt-get install kolourpaint4
打开界面如下
4. 一些常用命令如下:
ubuntu下常用命令可参考:
ubuntu下的常用的shell命令 - 我的梦想似彩虹 - 博客园
LINUX Shell常用命令_LH0912666的博客-CSDN博客_shell命令
5.微信和qq的安装可见博客Ubuntu 20.04安装微信、QQ_宏玄的专栏-CSDN博客_ubuntu 微信
解决ubuntu安装wine-QQ/wechat后出现字体乱码问题_nick_young_qu的博客-CSDN博客
ubuntu20.04 安装微信 解决中文显示问题 - 知乎
6.如何创建界面快捷方式见博客https://jingyan.baidu.com/article/7e440953ff08496ec0e2efda.html
7.安装远程工具,博主用的事ToDesk远程控制软件-免费安全流畅的远程连接电脑手机,按照官网配置即可
8.设置背景图片
9.挂载Windows下的其它盘,可参考给双系统的ubuntu挂载windows的硬盘_show me code-CSDN博客_ubuntu 挂载windows硬盘
10. 安装Anaconda
Anaconda | The World's Most Popular Data Science Platform
官网上点击get started进入下载页面
conda、anaconda、miniconda区别和miniconda安装_jonssonyan-CSDN博客_anaconda和miniconda区别
如下网页上可以下载到旧版本的Anaconda
这里用的是Anaconda3-5.2.0-Linux-x86_64.sh版本,直接按照如下帖子进行安装即可
Ubuntu18.04 安装 Anaconda3_梦Dancing的博客-CSDN博客_ubuntu安装anaconda
重启之后输入python
使用update-alternatives管理多个版本的Python,以及对应版本Python的第三方库的安装_Hi, Robotics-CSDN博客
若要卸载Anaconda,可参考2020-11-02-Ubuntu 20.04安装Anaconda3-卸载Anaconda3-笔记_贰-爺的博客-CSDN博客_ubuntu卸载anaconda3
11. 安装cuda和cudnn
cuda和cudnn这方面的介绍可以参考之前博客
深度学习中常用的网络层及Tensor RT支持的网络层_jiugeshao的专栏-CSDN博客
可以参考 Ubuntu 18.04安装CUDA和cuDNN - 知乎 来安装cuda和cudnn,也可以参考如下博客
Ubuntu16.04下安装cuda和cudnn的三种方法(亲测全部有效)_隔壁老王的博客-CSDN博客_ubuntu安装cuda
驱动的卸载参考Ubuntu 卸载nvidia驱动 - 唐淼 - 博客园
如下命令可以查询到一些信息
lspci | grep -i nvidia
sudo dpkg --list | grep nvidia-*
nvidia-smi
执行了一个cuda自带的例子,输出如下信息,表示cuda安装成功了
卸载cuda可参见此博客ubuntu完全卸载CUDA_Venquieu的博客-CSDN博客_ubuntu卸载cuda
博主这里安装的cuda版本为11.0
博主这边安装了tensorflow-gpu(2.4版本)
import tensorflow as tf
sess = tf.compat.v1.Session()
执行下来,出现如下输出语句,即表示cuda和cudnn已经配置成功
tf.compat.v1.Session()
2022-02-18 23:40:05.605991: I tensorflow/compiler/jit/xla_cpu_device.cc:41] Not creating XLA devices, tf_xla_enable_xla_devices not set
2022-02-18 23:40:05.606716: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcuda.so.1
2022-02-18 23:40:05.628902: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2022-02-18 23:40:05.629048: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1720] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: NVIDIA GeForce GTX 1660 Ti with Max-Q Design computeCapability: 7.5
coreClock: 1.335GHz coreCount: 24 deviceMemorySize: 5.80GiB deviceMemoryBandwidth: 268.26GiB/s
2022-02-18 23:40:05.629064: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
2022-02-18 23:40:05.631140: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublas.so.11
2022-02-18 23:40:05.631175: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublasLt.so.11
2022-02-18 23:40:05.632029: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcufft.so.10
2022-02-18 23:40:05.632223: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcurand.so.10
2022-02-18 23:40:05.634402: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusolver.so.10
2022-02-18 23:40:05.634916: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusparse.so.11
2022-02-18 23:40:05.635023: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudnn.so.8
2022-02-18 23:40:05.635107: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2022-02-18 23:40:05.635291: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2022-02-18 23:40:05.635411: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1862] Adding visible gpu devices: 0
2022-02-18 23:40:05.636312: I tensorflow/compiler/jit/xla_gpu_device.cc:99] Not creating XLA devices, tf_xla_enable_xla_devices not set
2022-02-18 23:40:05.636406: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2022-02-18 23:40:05.636535: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1720] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: NVIDIA GeForce GTX 1660 Ti with Max-Q Design computeCapability: 7.5
coreClock: 1.335GHz coreCount: 24 deviceMemorySize: 5.80GiB deviceMemoryBandwidth: 268.26GiB/s
2022-02-18 23:40:05.636550: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
2022-02-18 23:40:05.636564: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublas.so.11
2022-02-18 23:40:05.636576: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublasLt.so.11
2022-02-18 23:40:05.636588: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcufft.so.10
2022-02-18 23:40:05.636599: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcurand.so.10
2022-02-18 23:40:05.636610: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusolver.so.10
2022-02-18 23:40:05.636621: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusparse.so.11
2022-02-18 23:40:05.636633: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudnn.so.8
2022-02-18 23:40:05.636677: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2022-02-18 23:40:05.636823: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2022-02-18 23:40:05.636932: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1862] Adding visible gpu devices: 0
2022-02-18 23:40:05.636958: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
2022-02-18 23:40:06.063093: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1261] Device interconnect StreamExecutor with strength 1 edge matrix:
2022-02-18 23:40:06.063124: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1267] 0
2022-02-18 23:40:06.063131: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1280] 0: N
2022-02-18 23:40:06.063298: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2022-02-18 23:40:06.063472: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2022-02-18 23:40:06.063609: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2022-02-18 23:40:06.063721: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1406] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 4953 MB memory) -> physical GPU (device: 0, name: NVIDIA GeForce GTX 1660 Ti with Max-Q Design, pci bus id: 0000:01:00.0, compute capability: 7.5)
<tensorflow.python.client.session.Session object at 0x7f22082f4780>
>>>
可以和windows上安装cuda、cudnn、验证过程进行对比,见我之前的博客win7下cuda8.0安装跑gpu版tensorflow_jiugeshao的专栏-CSDN博客_cuda8.0 win7
如下位置下可以看到刚安装的tensorflow-gpu的库
其中Cudnn的版本也可以从一些程序的运行日志信息看到(如前面所跑的FCN例子)
12.Anaconda配置虚拟环境
ultralytics/yolov3训练预测自己数据集的配置过程_jiugeshao的专栏-CSDN博客
参考上面的博客,可以用来创建conda环境
conda create -n pytorch-yolo python=3.8
activate pytorch-yolo
增加清华源的命令
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
其它的操作命令可见如下博客
Anaconda安装与conda的基本操作_u010206379的博客-CSDN博客_anaconda conda
13. python版本的切换
树莓派4B上多版本python切换(一)_jiugeshao的专栏-CSDN博客
树莓派4B上多版本python切换(二)_jiugeshao的专栏-CSDN博客
前面博客提到python版本的切换,在Anaconda下也可以通过上面提到的conda创建虚拟环境来切换
从上面可以看到在Ubuntu 桌面系统下的配置深度学习环境操作和windows系统下,区分不大,操作习惯是一样的。下一篇博客会在此系统环境下配置下pytorch
更多推荐
所有评论(0)