电脑配置:

ubuntu14.04 64bit (网上有安装双系统的教程,不建议在虚拟机上安装除非只使用cpu版caffe)

内存8G

显卡GT 755M

cpu i5

软件版本: caffe官网当天git下载, nvidia官网下载cuda8.0, cudnnV5

Caffe安装步骤如下:

一、安装开发所需依赖包

sudo apt-get install build-essential    # basic requirement  

sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libboost-all-dev libhdf5-serial-dev libgflags-dev libgoogle-glog-dev liblmdb-dev protobuf-compiler   #required by caffe  


二、安装Cuda8.0

1. 离线.deb安装:官网下载地址: https://developer.nvidia.com/cuda-downloads

安装之前请先进行md5校验,确保下载的安装包完整


2. 切换到下载的deb所在目录,执行下边的命令

sudo dpkg -i cuda-repo-ubuntu1404-8-0-local_8.0-18_amd64.deb 

sudo apt-get update  

sudo apt-get install cuda  


3. 设置cuda的环境变量

(1)使用如下命令:

sudo vim /etc/profile

在/etc/profile中添加CUDA环境变量末尾添加如下内容:

PATH=/usr/local/cuda/bin:$PATH  

export PATH  

(2)保存后, 执行下列命令, 使环境变量立即生效

source /etc/profile  


(3)同时需要添加lib库路径: 使用

sudo vim/etc/ld.so.conf.d/cuda.conf

在/etc/ld.so.conf.d/加入cuda.conf文件, 内容如下

/usr/local/cuda/lib64  

 

(4)保存后,执行下列命令使之立刻生效

sudo ldconfig  

 

(5)然后重启电脑

sudo reboot


三、安装CudnnV5(最新的为6.0版本)

1. 官网上注册申请下载cudnn-8.0-linux-x64-v5.0-ga.tgz(地址https://developer.nvidia.com/cudnn)

2. 到下载目录下执行如下命令:

$ tar-zxvf cudnn-8.0-linux-x64-v5.0-ga.tgz

$ cd cuda/include

$ sudo cp *.h /usr/local/cuda/include/

$ cd ../lib64

$ sudo cp lib* /usr/local/cuda/lib64/

$ cd /usr/local/cuda/lib64/

$ sudo chmod +r libcudnn.so.5.0.5

$ sudo ln -sf libcudnn.so.5.0.5 libcudnn.so.5

$ sudo ln -sf libcudnn.so.5 libcudnn.so

$ sudo ldconfig


四、安装Cuda Sample(验证)

1. 进入/usr/local/cuda/samples,执行下列命令来编译samples:

$ cd /usr/local/cuda/samples

$ sudo make all -j4(依自己电脑核数而定)

 

2. 全部编译完成后,进入/usr/local/cuda/samples/bin/x86_64/linux/release,  运行deviceQuery

$ cd /usr/local/cuda/samples/bin/x86_64/linux/release

$ ./deviceQuery  

 

如果出现类似如下显卡信息, 则驱动及显卡安装成功:

./deviceQuery Starting...  


CUDA Device Query (Runtime API) version (CUDART static linking)  

Detected 1 CUDA Capable device(s)  

Device 0: "GeForce GTX 670"  

  CUDA Driver Version / Runtime Version          8.0 / 8.0  

  CUDA Capability Major/Minor version number:    3.0  

  Total amount of global memory:                 4095 MBytes (4294246400 bytes)  

  ( 7) Multiprocessors, (192) CUDA Cores/MP:     1344 CUDA Cores  

  GPU Clock rate:                                1098 MHz (1.10 GHz)  

  Memory Clock rate:                             3105 Mhz  

  Memory Bus Width:                              256-bit  

  L2 Cache Size:                                 524288 bytes  

  Maximum Texture Dimension Size (x,y,z)         1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)  

  Maximum Layered 1D Texture Size, (num) layers  1D=(16384), 2048 layers  

  Maximum Layered 2D Texture Size, (num) layers  2D=(16384, 16384), 2048 layers  

  Total amount of constant memory:               65536 bytes  

  Total amount of shared memory per block:       49152 bytes  

  Total number of registers available per block: 65536  

  Warp size:                                     32  

  Maximum number of threads per multiprocessor:  2048  

  Maximum number of threads per block:           1024  

  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)  

  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)  

  Maximum memory pitch:                          2147483647 bytes  

  Texture alignment:                             512 bytes  

  Concurrent copy and kernel execution:          Yes with 1 copy engine(s)  

  Run time limit on kernels:                     Yes  

  Integrated GPU sharing Host Memory:            No  

  Support host page-locked memory mapping:       Yes  

  Alignment requirement for Surfaces:            Yes  

  Device has ECC support:                        Disabled  

  Device supports Unified Addressing (UVA):      Yes  

  Device PCI Bus ID / PCI location ID:           1 / 0  

  Compute Mode:  

     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >  

  

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 8.0, NumDevs = 1, Device0 = GeForce GTX 670  

Result = PASS  

NOTE:上边的显卡信息是从别的地方拷过来的,我的GT755M显卡不是这些信息,如果没有这些信息,那肯定是安装不成功,找原因吧!


五、安装Inter MKL或openblas或Atlas(矩阵加速库)

装MKL需要上Intel官网用edu邮箱申请,在这我装的Atlas,安装命令:

$ sudo apt-get install libatlas-base-dev  


六、安装OpenCV

1. 下载并编译OpenCV(官网原版OpenCV:http://opencv.org/), 或者使用修改版的安装包(百度云盘链接: http://pan.baidu.com/s/1qX1uFHa 密码:wysa)(下面的安装方式使用该包完成,安装包修改了dependencies.sh文件并增加了OpenCV 3.0.0的安装文件)


2. 切换到文件保存的文件夹,然后安装依赖项:(进入 “Install-OpenCV-master” 文件夹下)

$ sudo sh Ubuntu/dependencies.sh


3. 切换目录Ubuntu/3.0/安装OpenCV 3.0.0:

$ cd Ubuntu/3.0/

$ sudo sh opencv3_0_0.sh

 

保证网络畅通,因为软件需要联网这里时间较长,请耐心等待。


七、安装Pycaffe环境

1. 按caffe官网的推荐使用Anaconda,去Anaconda官网下 安装包(下载python2.7 的Anaconda2-4.0.0-Linux-x86_64.sh)

 

2. 切换到文件所在目录,执行

bash Anaconda2-4.0.0-Linux-x86_64.sh  

 

NOTE:后边的文件名按自己下的版本号更改,整个安装过程请选择默认,安装路径为 /home/username/anaconda(username为自己系统的用户名)

 

3. 添加Anaconda Library Path:使用

$ sudo vim /etc/ld.so.conf

在/etc/ld.so.conf最后加入以下路径 (NOTE:下边的username要替换为自己的用户名):

/home/username/anaconda/lib  

 

4. 使用

vim ~/.bashrc

在~/.bashrc最后添加下边路径:

export LD_LIBRARY_PATH="/home/username/anaconda/lib:$LD_LIBRARY_PATH"

 

5. 退出运行如下命令使配置文件生效:

$ sudo ldconfig


八、安装python依赖库

1. 去caffe的github下载caffe源码包https://github.com/BVLC/caffe

2. 进入caffe-master下的python目录,执行如下命令

sudo apt-get install python-pip  #如果没有安装pip则需要执行该命令

for req in $(cat requirements.txt); do pip install $req; done  


九、编译Caffe

1. 进入caffe-master目录,复制一份Makefile.config.examples:

cp Makefile.config.example Makefile.config  

 

2. 修改配置文件,如果前边和该安装教程一致,那么配置文件应该是这个样子的:

## Refer tohttp://caffe.berkeleyvision.org/installation.html

# Contributions simplifying and improving ourbuild system are welcome!

# cuDNN acceleration switch (uncomment to buildwith cuDNN).

USE_CUDNN := 1

 

# CPU-only switch (uncomment to build without GPUsupport).

# CPU_ONLY := 1

 

# uncomment to disable IO dependencies andcorresponding data layers

# USE_OPENCV := 0

# USE_LEVELDB := 0

# USE_LMDB := 0

 

# uncomment to allow MDB_NOLOCK when reading LMDBfiles (only if necessary)

# Youshould not set this flag if you will be reading LMDBs with any

# possibility of simultaneous read and write

# ALLOW_LMDB_NOLOCK := 1

 

# Uncomment if you're using OpenCV 3

OPENCV_VERSION := 3

 

# To customize your choice of compiler, uncommentand set the following.

# N.B. the default for Linux is g++ and thedefault for OSX is clang++

# CUSTOM_CXX := g++

 

# CUDA directory contains bin/ and lib/directories that we need.

CUDA_DIR := /usr/local/cuda

# On Ubuntu 14.04, if cuda tools are installedvia

# "sudo apt-get installnvidia-cuda-toolkit" then use this instead:

# CUDA_DIR := /usr

 

# CUDA architecture setting: going with all ofthem.

# For CUDA < 6.0, comment the *_50 lines forcompatibility.

CUDA_ARCH := -gencode arch=compute_20,code=sm_20\

               -gencode arch=compute_20,code=sm_21 \

               -gencode arch=compute_30,code=sm_30 \

               -gencode arch=compute_35,code=sm_35 \

               -gencode arch=compute_50,code=sm_50 \

               -gencode arch=compute_50,code=compute_50

 

# BLAS choice:

# atlas for ATLAS (default)

# mkl for MKL

# open for OpenBlas

BLAS := atlas  #这里根据自己安装的加速库而定

# NOTE: this is required only if you will compilethe python interface.

# We need to be able to find Python.h andnumpy/arrayobject.h.

#PYTHON_INCLUDE :=/usr/include/python2.7 \

               /usr/lib/python2.7/dist-packages/numpy/core/include

# Anaconda Python distribution is quite popular.Include path:

# Verify anaconda location, sometimes it's inroot.

ANACONDA_HOME := /home/username/anaconda  #记得改username

PYTHON_INCLUDE :=$(ANACONDA_HOME)/include \

               $(ANACONDA_HOME)/include/python2.7 \

               $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \

 

# Uncomment to use Python 3 (default is Python 2)

# PYTHON_LIBRARIES := boost_python3 python3.5m

# PYTHON_INCLUDE := /usr/include/python3.5m \

#                /usr/lib/python3.5/dist-packages/numpy/core/include

 

# We need to be able to find libpythonX.X.so or.dylib.

#PYTHON_LIB := /usr/lib

PYTHON_LIB := $(ANACONDA_HOME)/lib

 

# Homebrew installs numpy in a non standard path(keg only)

# PYTHON_INCLUDE += $(dir $(shell python -c'import numpy.core; print(numpy.core.__file__)'))/include

# PYTHON_LIB += $(shell brew --prefix numpy)/lib

 

# Uncomment to support layers written in Python(will link against Python libs)

WITH_PYTHON_LAYER := 1

 

# Whatever else you find you need goes here.

INCLUDE_DIRS := $(PYTHON_INCLUDE)/usr/local/include /usr/lib/x86_64-linux-gnu/hdf5/serial/include

LIBRARY_DIRS := $(PYTHON_LIB)/usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial

 

# If Homebrew is installed at a non standardlocation (for example your home directory) and you use it for generaldependencies

# INCLUDE_DIRS += $(shell brew --prefix)/include

# LIBRARY_DIRS += $(shell brew –prefix)/lib

# Uncomment to use `pkg-config` to specify OpenCVlibrary paths.

# (Usually not necessary -- OpenCV libraries arenormally installed in one of the above $LIBRARY_DIRS.)

# USE_PKG_CONFIG := 1

 

# N.B. both build and distribute dirs are clearedon `make clean`

BUILD_DIR := build

DISTRIBUTE_DIR := distribute

 

# Uncomment for debugging. Does not work on OSXdue to https://github.com/BVLC/caffe/issues/171

# DEBUG := 1

 

# The ID of the GPU that 'make runtest' will useto run unit tests.

TEST_GPUID := 0

 

# enable pretty build (comment to see fullcommands)

Q ?= @

 

3. 保存退出,然后编译:(如报错可按报错内容安装相应依赖包或修改环境变量)

$ make all -j4

$ make test  

$ make runtest


4. 编译python wrapper

$ make pycaffe 

$ vim ~/.bashrc 在末尾添加:

export PYTHONPATH=”/home/username/caffe-master/python:$PYTHONPATH”

$ sudo ldconfig  #使之生效



十、使用Mnist数据集测试

Caffe默认情况会安装在$CAFFE_ROOT,就是解压到那个目录,例如:$home/username/caffe-master,所以下面的工作,默认已经切换到了该工作目录。下面的工作主要是,用于测试Caffe是否工作正常,不做详细评估。具体设置请参考官网:http://caffe.berkeleyvision.org/gathered/examples/mnist.html

1. 数据预处理

$ sh data/mnist/get_mnist.sh

2. 重建lmdb文件。Caffe支持多种数据格式输入网络,包括Image(.jpg,.png)leveldblmdbHDF5等,根据自己需要选择不同输入吧。

$ sh examples/mnist/create_mnist.sh

生成mnist-train-lmdbmnist-train-lmdb文件夹,这里包含了lmdb格式的数据集

3. 训练mnist,出现如下图所示则caffe安装工作成功。



 

Reference:

1. http://blog.csdn.net/ubunfans/article/details/47724341

2. http://www.cnblogs.com/karac/p/5456134.html





 






Logo

华为开发者空间,是为全球开发者打造的专属开发空间,汇聚了华为优质开发资源及工具,致力于让每一位开发者拥有一台云主机,基于华为根生态开发、创新。

更多推荐