Kafka:ZK+Kafka+Spark Streaming集群环境搭建(九)安装kafka_2.11-1.1.0

如何搭建配置centos虚拟机请参考《Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网。

如何安装hadoop2.9.0请参考《Kafka:ZK+Kafka+Spark Streaming集群环境搭建(二)安装hadoop2.9.0

如何配置hadoop2.9.0 HA 请参考《Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十)安装hadoop2.9.0搭建HA

如何安装spark2.2.1请参考《Kafka:ZK+Kafka+Spark Streaming集群环境搭建(三)安装spark2.2.1

如何安装zookeeper-3.4.12请参考《Kafka:ZK+Kafka+Spark Streaming集群环境搭建(八)安装zookeeper-3.4.12

安装kafka的服务器:

192.168.0.120      master
192.168.0.121      slave1
192.168.0.122      slave2
192.168.0.123      slave3

备注:只在slave1,slave2,slave3三个节店上安装zookeeper,master节店不安装(其实前边hadoop中master不作为datanode节店,spark中master不作为worker节店)。

下载解压

官网上下载kafka,并上传到slave1(192.168.0.121)的/opt目录下。这里kafka下载的是:kafka_2.11-1.1.0.tgz

在slave1上解压kafka_2.11-1.1.0.tgz

[root@slave1 opt]# tar -zxvf kafka_2.11-1.1.0.tgz 

配置kafka

1)配置文件位置

路径:/opt/kafka_2.11-1.1.0/config/server.properties

[root@slave1 config]# ls
connect-console-sink.properties    connect-distributed.properties  connect-file-source.properties  connect-standalone.properties  log4j.properties     server.properties       zookeeper.properties
connect-console-source.properties  connect-file-sink.properties    connect-log4j.properties        consumer.properties            producer.properties  tools-log4j.properties
[root@slave1 config]# 

2)server.properties默认配置

  View Code

3)在slave1上,修改server.properties后配置内容

复制代码
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# see kafka.server.KafkaConfig for additional details and defaults

############################# Server Basics #############################

# The id of the broker. This must be set to a unique integer for each broker.
broker.id=0

############################# Socket Server Settings #############################

# The address the socket server listens on. It will get the value returned from 
# java.net.InetAddress.getCanonicalHostName() if not configured.
#   FORMAT:
#     listeners = listener_name://host_name:port
#   EXAMPLE:
#     listeners = PLAINTEXT://your.host.name:9092

listeners=PLAINTEXT://:9092
port=9092
host.name=192.168.0.121
advertised.host.name=192.168.0.121
advertised.port=9092


# Hostname and port the broker will advertise to producers and consumers. If not set, 
# it uses the value for "listeners" if configured.  Otherwise, it will use the value
# returned from java.net.InetAddress.getCanonicalHostName().
#advertised.listeners=PLAINTEXT://your.host.name:9092

# Maps listener names to security protocols, the default is for them to be the same. See the config documentation for more details
#listener.security.protocol.map=PLAINTEXT:PLAINTEXT,SSL:SSL,SASL_PLAINTEXT:SASL_PLAINTEXT,SASL_SSL:SASL_SSL

# The number of threads that the server uses for receiving requests from the network and sending responses to the network
num.network.threads=3

# The number of threads that the server uses for processing requests, which may include disk I/O
num.io.threads=8

# The send buffer (SO_SNDBUF) used by the socket server
socket.send.buffer.bytes=102400

# The receive buffer (SO_RCVBUF) used by the socket server
socket.receive.buffer.bytes=102400

# The maximum size of a request that the socket server will accept (protection against OOM)
socket.request.max.bytes=104857600


############################# Log Basics #############################

# A comma separated list of directories under which to store log files
#log.dirs=/tmp/kafka-logs
log.dirs=/opt/kafka_2.11-1.1.0/logs

# The default number of log partitions per topic. More partitions allow greater
# parallelism for consumption, but this will also result in more files across
# the brokers.
num.partitions=1

# The number of threads per data directory to be used for log recovery at startup and flushing at shutdown.
# This value is recommended to be increased for installations with data dirs located in RAID array.
num.recovery.threads.per.data.dir=1

############################# Internal Topic Settings  #############################
# The replication factor for the group metadata internal topics "__consumer_offsets" and "__transaction_state"
# For anything other than development testing, a value greater than 1 is recommended for to ensure availability such as 3.
offsets.topic.replication.factor=1
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1

############################# Log Flush Policy #############################

# Messages are immediately written to the filesystem but by default we only fsync() to sync
# the OS cache lazily. The following configurations control the flush of data to disk.
# There are a few important trade-offs here:
#    1. Durability: Unflushed data may be lost if you are not using replication.
#    2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
#    3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to excessive seeks.
# The settings below allow one to configure the flush policy to flush data after a period of time or
# every N messages (or both). This can be done globally and overridden on a per-topic basis.

# The number of messages to accept before forcing a flush of data to disk
#log.flush.interval.messages=10000

# The maximum amount of time a message can sit in a log before we force a flush
#log.flush.interval.ms=1000

############################# Log Retention Policy #############################

# The following configurations control the disposal of log segments. The policy can
# be set to delete segments after a period of time, or after a given size has accumulated.
# A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
# from the end of the log.

# The minimum age of a log file to be eligible for deletion due to age
log.retention.hours=168

# A size-based retention policy for logs. Segments are pruned from the log unless the remaining
# segments drop below log.retention.bytes. Functions independently of log.retention.hours.
#log.retention.bytes=1073741824

# The maximum size of a log segment file. When this size is reached a new log segment will be created.
log.segment.bytes=1073741824

# The interval at which log segments are checked to see if they can be deleted according
# to the retention policies
log.retention.check.interval.ms=300000

############################# Zookeeper #############################

# Zookeeper connection string (see zookeeper docs for details).
# This is a comma separated host:port pairs, each corresponding to a zk
# server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
# You can also append an optional chroot string to the urls to specify the
# root directory for all kafka znodes.
zookeeper.connect=192.168.0.120:2181,192.168.0.121:2181,192.168.0.122:2181

# Timeout in ms for connecting to zookeeper
zookeeper.connection.timeout.ms=6000


############################# Group Coordinator Settings #############################

# The following configuration specifies the time, in milliseconds, that the GroupCoordinator will delay the initial consumer rebalance.
# The rebalance will be further delayed by the value of group.initial.rebalance.delay.ms as new members join the group, up to a maximum of max.poll.interval.ms.
# The default value for this is 3 seconds.
# We override this to 0 here as it makes for a better out-of-the-box experience for development and testing.
# However, in production environments the default value of 3 seconds is more suitable as this will help to avoid unnecessary, and potentially expensive, rebalances during application startup.
group.initial.rebalance.delay.ms=0
复制代码

配置的详细说明请参考官方文档:http://kafka.apache.org/documentation.html#brokerconfigs

注意:按照官方文档的说法,advertised.host.name 和 advertised.port 这两个参数用于定义集群向 Producer 和 Consumer 广播的节点 host 和 port,如果不定义,会默认使用 host.name 和 port 的定义。但在实际应用中,发现如果不定义 advertised.host.name 参数,使用 Java 客户端从远端连接集群时,会发生连接超时,抛出异常:org.apache.kafka.common.errors.TimeoutException: Batch Expired

经过过 debug 发现,连接到集群是成功的,但连接到集群后更新回来的集群 meta 信息却是错误的。metadata 中的 Cluster 信息中节点的 hostname 是一串字符,而不是实际的ip地址。这串其实是远端主机的 hostname,这说明在没有配置 advertised.host.name 的情况下,Kafka 并没有像官方文档宣称的那样改为广播我们配置的 host.name,而是广播了主机配置的 hostname 。远端的客户端并没有配置 hosts,所以自然是连接不上这个 hostname 的。要解决这一问题,把 host.name 和 advertised.host.name 都配置成绝对的 ip 地址就可以了。

将配置后的kafka文件拷贝到slave2,slave3服务器上,并修改server.properties配置文件

1)将配置后的kafka文件拷贝到slave2,slave3服务器上

在slave1上执行以下命令,将拷贝kafka文件到slave2,slave3节点

在执行拷贝之前,需要在slave2,slave3上新建文件/opt/kafka_2.11-1.1.0目录,以slave3执行为例:

复制代码
[spark@slave3 ~]$ su root
Password: 
[root@slave3 spark]# mkdir /opt/kafka_2.11-1.1.0
[root@slave3 spark]# ls
[root@slave3 spark]# cd /opt/
hadoop-2.9.0  jdk1.8.0_171  jdk-8u171-linux-x64.tar.gz  kafka_2.11-1.1.0  scala-2.11.0  scala-2.11.0.tgz  spark-2.2.1-bin-hadoop2.7
[root@slave3 opt]# chmod 777 /opt/kafka_2.11-1.1.0
[root@slave3 opt]# 
复制代码

在slave1执行拷贝:

scp -r /opt/kafka_2.11-1.1.0 spark@slave2:/opt/
scp -r /opt/kafka_2.11-1.1.0 spark@slave3:/opt/

2)并修改server.properties配置文件

修改1:slave2,slave3上的/opt/kafka_2.11-1.1.0/config/server.properties

主要修改:

host.name=192.168.0.121
advertised.host.name=192.168.0.121

确保ip修改为自己的ip。

修改2:slave2,slave3上/opt/kafka_2.11-1.1.0/config/server.properties的broker.id配置项,使得slave2的broker.id=1,slave3的broker.id=2。否则会出现下边的错误broker.id重复抛出异常,导致启动kafka失败。

在slave1,slave2,slave3主机上分别启动 Kafka 服务

cd /opt/kafka_2.11-1.1.0/
bin/kafka-server-start.sh -daemon config/server.properties

官方给出的启动方法是:

bin/kafka-server-start.sh config/server.properties &   

1)启动失败:此时启动slave2,slave3启动一会后,自动杀掉kafka进程,从/opt/kafka_2.11-1.1.0/logs/server.log日志中查找到抛出了异常:

复制代码
[2018-07-01 07:10:45,198] INFO Creating /brokers/ids/0 (is it secure? false) (kafka.zk.KafkaZkClient)
[2018-07-01 07:10:45,204] ERROR Error while creating ephemeral at /brokers/ids/0, node already exists and owner '144115199316656129' does not match current session '72057669184061443' (kafka.zk.KafkaZkCli
ent$CheckedEphemeral)
[2018-07-01 07:10:45,204] INFO Result of znode creation at /brokers/ids/0 is: NODEEXISTS (kafka.zk.KafkaZkClient)
[2018-07-01 07:10:45,208] ERROR [KafkaServer id=0] Fatal error during KafkaServer startup. Prepare to shutdown (kafka.server.KafkaServer)
org.apache.zookeeper.KeeperException$NodeExistsException: KeeperErrorCode = NodeExists
        at org.apache.zookeeper.KeeperException.create(KeeperException.java:119)
        at kafka.zk.KafkaZkClient.checkedEphemeralCreate(KafkaZkClient.scala:1476)
        at kafka.zk.KafkaZkClient.registerBrokerInZk(KafkaZkClient.scala:84)
        at kafka.server.KafkaServer.startup(KafkaServer.scala:254)
        at kafka.server.KafkaServerStartable.startup(KafkaServerStartable.scala:38)
        at kafka.Kafka$.main(Kafka.scala:92)
        at kafka.Kafka.main(Kafka.scala)
[2018-07-01 07:10:45,209] INFO [KafkaServer id=0] shutting down (kafka.server.KafkaServer)
复制代码

错误原因:server.properties文件中的broker.id的值,在集群环境下重复了,即,一个kafka的集群环境下,broker.id的值是不能重复的,必须唯一。就算kafka服务在不同机器上。

解决方案:修改slave2,slave3上/opt/kafka_2.11-1.1.0/config/server.properties的broker.id配置项,使得slave2的broker.id=1,slave3的broker.id=2。

以slave1启动为例:

复制代码
[root@slave1 kafka_2.11-1.1.0]# cd /opt/kafka_2.11-1.1.0/
[root@slave1 kafka_2.11-1.1.0]# bin/kafka-server-start.sh -daemon config/server.properties
[root@slave1 kafka_2.11-1.1.0]# jps
1347 QuorumPeerMain
2493 Jps
2431 Kafka
复制代码

创建分区和 topic

1)在slave1(192.168.0.121)上创建一个名为 my-topic,拥有两个分区,两个副本的Topic

cd /opt/kafka_2.11-1.1.0/
bin/kafka-topics.sh --create --zookeeper 192.168.0.120:2181,192.168.0.121:2181,192.168.0.122:2181 --replication-factor 2 --partitions 2 --topic my-topic

返回信息:

[root@slave1 kafka_2.11-1.1.0]# cd /opt/kafka_2.11-1.1.0/
[root@slave1 kafka_2.11-1.1.0]# bin/kafka-topics.sh --create --zookeeper 192.168.0.120:2181,192.168.0.121:2181,192.168.0.122:2181 --replication-factor 2 --partitions 2 --topic my-topic
Created topic "my-topic".
[root@slave1 kafka_2.11-1.1.0]# 

2)验证:同一个名称的topic,在一个kafka的集群环境下,不能重复创建。

在slave1(192.168.0.121)上创建一个名为 my-topic,拥有两个分区,两个副本的Topic

复制代码
[root@slave1 kafka_2.11-1.1.0]# cd /opt/kafka_2.11-1.1.0/
[root@slave1 kafka_2.11-1.1.0]# bin/kafka-topics.sh --create --zookeeper 192.168.0.120:2181,192.168.0.121:2181,192.168.0.122:2181 --replication-factor 2 --partitions 2 --topic my-topic
Error while executing topic command : Topic 'my-topic' already exists.
[2018-07-01 07:31:23,274] ERROR org.apache.kafka.common.errors.TopicExistsException: Topic 'my-topic' already exists.
 (kafka.admin.TopicCommand$)
[root@slave1 kafka_2.11-1.1.0]# 
复制代码

在salve2(192.168.0.122)上创建一个名为 my-topic,拥有两个分区,两个副本的Topic

复制代码
[root@slave2 kafka_2.11-1.1.0]# cd /opt/kafka_2.11-1.1.0/
[root@slave2 kafka_2.11-1.1.0]# bin/kafka-topics.sh --create --zookeeper 192.168.0.120:2181,192.168.0.121:2181,192.168.0.122:2181 --replication-factor 2 --partitions 2 --topic my-topic
Error while executing topic command : Topic 'my-topic' already exists.
[2018-07-01 07:32:08,099] ERROR org.apache.kafka.common.errors.TopicExistsException: Topic 'my-topic' already exists.
 (kafka.admin.TopicCommand$)
[root@slave2 kafka_2.11-1.1.0]# 
复制代码

3)查看 Topic 状态

复制代码
[root@slave2 kafka_2.11-1.1.0]# cd /opt/kafka_2.11-1.1.0/
[root@slave2 kafka_2.11-1.1.0]# bin/kafka-topics.sh --describe --zookeeper 192.168.0.120:2181,192.168.0.121:2181,192.168.0.122:2181 --topic my-topic

Topic:my-topic  PartitionCount:2        ReplicationFactor:2     Configs:
        Topic: my-topic Partition: 0    Leader: 2       Replicas: 2,0   Isr: 2,0
        Topic: my-topic Partition: 1    Leader: 0       Replicas: 0,2   Isr: 0,2
复制代码

4)查看当前kafka包含的topics列表

[spark@slave1 kafka_2.11-1.1.0]$ cd /opt/kafka_2.11-1.1.0/
[spark@slave1 kafka_2.11-1.1.0]$ bin/kafka-topics.sh --list --zookeeper 192.168.0.120:2181,192.168.0.121:2181,192.168.0.122:2181 
my-topic
t-my
t-order

5)删除某个topic

复制代码
[spark@slave1 kafka_2.11-1.1.0]$ cd /opt/kafka_2.11-1.1.0/
[spark@slave1 kafka_2.11-1.1.0]$ bin/kafka-topics.sh --delete --zookeeper 192.168.0.120:2181,192.168.0.121:2181,192.168.0.122:2181 --topic my-topic
Topic my-topic is marked for deletion.
Note: This will have no impact if delete.topic.enable is not set to true.
[spark@slave1 kafka_2.11-1.1.0]$ bin/kafka-topics.sh --list --zookeeper 192.168.0.120:2181,192.168.0.121:2181,192.168.0.122:2181                   
t-my
t-order
[spark@slave1 kafka_2.11-1.1.0]$ 
复制代码

此时,Kafka 集群的搭建已成功完成!

其它常用命令:

查看指定topic信息

bin/kafka-topics.sh --zookeeper 192.168.0.120:2181,192.168.0.121:2181,192.168.0.122:2181 --describe --topic t-my

控制台向topic生产数据

bin/kafka-console-producer.sh --broker-list 192.168.0.121:9092,192.168.0.122:9092,192.168.0.123:9092 --topic t-my

控制台消费topic的数据

bin/kafka-console-consumer.sh --zookeeper 192.168.0.120:2181,192.168.0.121:2181,192.168.0.122:2181 --topic t-my --from-beginning

查看topic某分区偏移量最大(小)值

bin/kafka-run-class.sh kafka.tools.GetOffsetShell --topic t-my --time -1 --broker-list 192.168.0.121:9092,192.168.0.122:9092,192.168.0.123:9092 --partitions 0

注: time为-1时表示最大值,time为-2时表示最小值

 

参考《https://www.cnblogs.com/RUReady/p/6479464.html》

 



感谢您的阅读,如果您觉得阅读本文对您有帮助,请点一下“推荐”按钮。本文欢迎各位转载,但是转载文章之后必须在文章页面中给出作者和原文连接。

基础才是编程人员应该深入研究的问题,比如:
1)List/Set/Map内部组成原理|区别
2)mysql索引存储结构&如何调优/b-tree特点、计算复杂度及影响复杂度的因素。。。
3)JVM运行组成与原理及调优
4)Java类加载器运行原理
5)Java中GC过程原理|使用的回收算法原理
6)Redis中hash一致性实现及与hash其他区别
7)Java多线程、线程池开发、管理Lock与Synchroined区别
8)Spring IOC/AOP 原理;加载过程的。。。
【+加关注】。

分类:   BigData-Kafka
标签:   Kafka
0
0
« 上一篇: Kafka:ZK+Kafka+Spark Streaming集群环境搭建(八)安装zookeeper-3.4.12
» 下一篇: Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十)安装hadoop2.9.0搭建HA
posted @   2018-06-30 22:22   cctext  阅读( 37) 评论( 0)   编辑   收藏
Logo

华为开发者空间,是为全球开发者打造的专属开发空间,汇聚了华为优质开发资源及工具,致力于让每一位开发者拥有一台云主机,基于华为根生态开发、创新。

更多推荐