【5G/4G】128-EEA1与128-NEA1算法详解
文章目录128-EEA1与128-NEA1算法详解本人就职于国际知名终端厂商,负责modem芯片研发。在5G早期负责终端数据业务层、核心网相关的开发工作,目前牵头6G算力网络技术标准研究。博客内容主要围绕: 5G协议讲解 算力网络讲解(
·
本人就职于国际知名终端厂商,负责modem芯片研发。
在5G早期负责终端数据业务层、核心网相关的开发工作,目前牵头6G算力网络技术标准研究。
博客内容主要围绕:
5G协议讲解
算力网络讲解(云计算,边缘计算,端计算)
高级C语言讲解
Rust语言讲解
128-EEA1与128-NEA1算法详解
注意下面用到了 nettle库,记得添加链接参数 -lnettle
secu_defs.h
typedef struct {
uint8_t *key;
uint32_t key_length;
uint32_t count;
uint8_t bearer;
uint8_t direction;
uint8_t *message;
/* length in bits */
uint32_t blength;
} stream_cipher_t;
conversions.h
/* Endianness conversions for 16 and 32 bits integers from host to network order */
#if (BYTE_ORDER == LITTLE_ENDIAN)
# define hton_int32(x) \
(((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) | \
((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24))
# define hton_int16(x) \
(((x & 0x00FF) << 8) | ((x & 0xFF00) >> 8)
# define ntoh_int32_buf(bUF) \
((*(bUF)) << 24) | ((*((bUF) + 1)) << 16) | ((*((bUF) + 2)) << 8) \
| (*((bUF) + 3))
#else
# define hton_int32(x) (x)
# define hton_int16(x) (x)
#endif
nea1_eea1_stream.c
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <nettle/nettle-meta.h>
#include <nettle/aes.h>
#include <nettle/ctr.h>
#include "assert.h"
#include "conversions.h"
#include "secu_defs.h"
#include "snow3g.h" //定义在《Snow 3G算法源码介绍》blog中
// #define SECU_DEBUG
int nea1_eea1(stream_cipher_t*stream_cipher, uint8_t *out)
{
snow_3g_context_t snow_3g_context;
int n ;
int i = 0;
uint32_t zero_bit = 0;
//uint32_t byte_length;
uint32_t *KS;
uint32_t K[4],IV[4];
assert(stream_cipher != NULL);
assert(stream_cipher->key != NULL);
assert(stream_cipher->key_length == 16);
assert(out != NULL);
n = ( stream_cipher->blength + 31 ) / 32;
zero_bit = stream_cipher->blength & 0x7;
//byte_length = stream_cipher->blength >> 3;
memset(&snow_3g_context, 0, sizeof(snow_3g_context));
/*Initialisation*/
/* Load the confidentiality key for SNOW 3G initialization as in section
3.4. */
memcpy(K+3,stream_cipher->key+0,4); /*K[3] = key[0]; we assume
K[3]=key[0]||key[1]||...||key[31] , with key[0] the
* most important bit of key*/
memcpy(K+2,stream_cipher->key+4,4); /*K[2] = key[1];*/
memcpy(K+1,stream_cipher->key+8,4); /*K[1] = key[2];*/
memcpy(K+0,stream_cipher->key+12,4); /*K[0] = key[3]; we assume
K[0]=key[96]||key[97]||...||key[127] , with key[127] the
* least important bit of key*/
K[3] = hton_int32(K[3]);
K[2] = hton_int32(K[2]);
K[1] = hton_int32(K[1]);
K[0] = hton_int32(K[0]);
/* Prepare the initialization vector (IV) for SNOW 3G initialization as in
section 3.4. */
IV[3] = stream_cipher->count;
IV[2] = ((((uint32_t)stream_cipher->bearer) << 3) | ((((uint32_t)stream_cipher->direction) & 0x1) << 2)) << 24;
IV[1] = IV[3];
IV[0] = IV[2];
/* Run SNOW 3G algorithm to generate sequence of key stream bits KS*/
snow3g_initialize(K, IV, &snow_3g_context);
KS = (uint32_t *)malloc(4*n);
snow3g_generate_key_stream(n,(uint32_t*)KS, &snow_3g_context);
if (zero_bit > 0) {
KS[n - 1] = KS[n - 1] & (uint32_t)(0xFFFFFFFF << (8 - zero_bit));
}
for (i=0; i<n; i++) {
KS[i] = hton_int32(KS[i]);
}
/* Exclusive-OR the input data with keystream to generate the output bit
stream */
for (i=0; i<n*4; i++) {
stream_cipher->message[i] ^= *(((uint8_t*)KS)+i);
}
int ceil_index = 0;
if (zero_bit > 0) {
ceil_index = (stream_cipher->blength+7) >> 3;
stream_cipher->message[ceil_index - 1] = stream_cipher->message[ceil_index - 1] & (uint8_t)(0xFF << (8 - zero_bit));
}
free(KS);
memcpy(out, stream_cipher->message, n*4);
if (zero_bit > 0) {
out[ceil_index - 1] = stream_cipher->message[ceil_index - 1];
}
return 0;
}
《Snow 3G算法源码介绍》
《128-bit AES算法源码介绍》
《ZUC算法源码介绍》
【5G/4G】128-EEA1与128-NEA1算法详解
【5G/4G】128-EEA2与128-NEA2算法详解
【5G/4G】128-EEA3与128-NEA3算法详解
【5G/4G】128-EIA1与128-NIA1算法详解
【5G/4G】128-EIA2与128-NIA2算法详解
【5G/4G】128-EIA3与128-NIA3算法详解
更多推荐
已为社区贡献25条内容
所有评论(0)