什么是线程池

在面向对象编程中,创建和销毁对象是很费时间的,因为创建一个对象要获取内存资源或者其它更多资源。在Java中更是如此,虚拟机将试图跟踪每一个对象,以便能够在对象销毁后进行垃圾回收。所以提高服务程序效率的一个手段就是尽可能减少创建和销毁对象的次数,特别是一些很耗资源的对象创建和销毁,这就是”池化资源”技术产生的原因。线程池顾名思义就是事先创建若干个可执行的线程放入一个池(容器)中,需要的时候从池中获取线程不用自行创建,使用完毕不需要销毁线程而是放回池中,从而减少创建和销毁线程对象的开销。
Java 5+中的Executor接口定义一个执行线程的工具。它的子类型即线程池接口是ExecutorService。要配置一个线程池是比较复杂的,尤其是对于线程池的原理不是很清楚的情况下,因此在工具类Executors面提供了一些静态工厂方法,生成一些常用的线程池,如下所示:

  • newSingleThreadExecutor:创建一个单线程的线程池。这个线程池只有一个线程在工作,也就是相当于单线程串行执行所有任务。如果这个唯一的线程因为异常结束,那么会有一个新的线程来替代它。此线程池保证所有任务的执行顺序按照任务的提交顺序执行。
  • newFixedThreadPool:创建固定大小的线程池。每次提交一个任务就创建一个线程,直到线程达到线程池的最大大小。线程池的大小一旦达到最大值就会保持不变,如果某个线程因为执行异常而结束,那么线程池会补充一个新线程。
  • newCachedThreadPool:创建一个可缓存的线程池。如果线程池的大小超过了处理任务所需要的线程,那么就会回收部分空闲(60秒不执行任务)的线程,当任务数增加时,此线程池又可以智能的添加新线程来处理任务。此线程池不会对线程池大小做限制,线程池大小完全依赖于操作系统(或者说JVM)能够创建的最大线程大小。
  • newScheduledThreadPool:创建一个大小无限的线程池。此线程池支持定时以及周期性执行任务的需求。
  • newSingleThreadExecutor:创建一个单线程的线程池。此线程池支持定时以及周期性执行任务的需求。

线程池代码分析

/**
     * Creates a new {@code ThreadPoolExecutor} with the given initial
     * parameters.
     *
     * @param corePoolSize the number of threads to keep in the pool, even
     *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
     * @param maximumPoolSize the maximum number of threads to allow in the
     *        pool
     * @param keepAliveTime when the number of threads is greater than
     *        the core, this is the maximum time that excess idle threads
     *        will wait for new tasks before terminating.
     * @param unit the time unit for the {@code keepAliveTime} argument
     * @param workQueue the queue to use for holding tasks before they are
     *        executed.  This queue will hold only the {@code Runnable}
     *        tasks submitted by the {@code execute} method.
     * @param threadFactory the factory to use when the executor
     *        creates a new thread
     * @param handler the handler to use when execution is blocked
     *        because the thread bounds and queue capacities are reached
     * @throws IllegalArgumentException if one of the following holds:<br>
     *         {@code corePoolSize < 0}<br>
     *         {@code keepAliveTime < 0}<br>
     *         {@code maximumPoolSize <= 0}<br>
     *         {@code maximumPoolSize < corePoolSize}
     * @throws NullPointerException if {@code workQueue}
     *         or {@code threadFactory} or {@code handler} is null
     */
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.acc = System.getSecurityManager() == null ?
                null :
                AccessController.getContext();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }

corePoolSize :核心线程数。一直活跃,尽管空闲
maximumPoolSize 最大线程数
keepAliveTime 超出corePoolSize的线程最大闲置时间
unit :keepAliveTime 时间单位
workQueue:任务队列类型,有以下几种实现
image.png
ThreadFactory :创建线程
handler:线程池无法接收任务处理策略

在这里插入图片描述

 /**
     * Executes the given task sometime in the future.  The task
     * may execute in a new thread or in an existing pooled thread.
     *
     * If the task cannot be submitted for execution, either because this
     * executor has been shutdown or because its capacity has been reached,
     * the task is handled by the current {@code RejectedExecutionHandler}.
     *
     * @param command the task to execute
     * @throws RejectedExecutionException at discretion of
     *         {@code RejectedExecutionHandler}, if the task
     *         cannot be accepted for execution
     * @throws NullPointerException if {@code command} is null
     */
    public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        /*
         * Proceed in 3 steps:
         *
         * 1. If fewer than corePoolSize threads are running, try to
         * start a new thread with the given command as its first
         * task.  The call to addWorker atomically checks runState and
         * workerCount, and so prevents false alarms that would add
         * threads when it shouldn't, by returning false.
         *
         * 2. If a task can be successfully queued, then we still need
         * to double-check whether we should have added a thread
         * (because existing ones died since last checking) or that
         * the pool shut down since entry into this method. So we
         * recheck state and if necessary roll back the enqueuing if
         * stopped, or start a new thread if there are none.
         *
         * 3. If we cannot queue task, then we try to add a new
         * thread.  If it fails, we know we are shut down or saturated
         * and so reject the task.
         */
        int c = ctl.get();
  
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        //如果队列未满,放入队列
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
         //队列已满,开线程执行,如果大于maximumPoolSize,拒绝任务
        else if (!addWorker(command, false))
            reject(command);
    }

1、如果当前运行的线程少于corePoolSize,则创建新线程来执行任务(需要获得全局锁);
2、如果运行的线程等于或多于corePoolSize ,则将任务加入BlockingQueue;
3、如果无法将任务加入BlockingQueue(队列已满并且正在运行的线程数量小于 maximumPoolSize),则创建新的线程来处理任务(需要获得全局锁)
4、如果创建新线程将使当前运行的线程超出maxiumPoolSize(队列已满并且正在运行的线程数量大于或等于 maximumPoolSize),任务将被拒绝,并调用RejectedExecutionHandler.rejectedExecution()方法(线程池会抛出异常,告诉调用者"我不能再接受任务了");
线程池采取上述的流程进行设计是为了减少获取全局锁的次数。在线程池完成预热(当前运行的线程数大于或等于corePoolSize)之后,几乎所有的excute方法调用都执行步骤2;
5、当一个线程完成任务时,它会从队列中取下一个任务来执行;
6、当一个线程无事可做,超过一定的时间(keepAliveTime)时,线程池会判断,如果当前运行的线程数大于 corePoolSize,那么这个线程就被停掉。所以线程池的所有任务完成后,它最终会收缩到 corePoolSize 的大小

任务的管理是一件比较容易的事,复杂的是线程的管理,这会涉及线程数量、等待/唤醒、同步/锁、线程创建和死亡等问题。ThreadPoolExecutor与线程相关的几个成员变量是:keepAliveTime、allowCoreThreadTimeOut、poolSize、corePoolSize、maximumPoolSize,它们共同负责线程的创建和销毁。

计算workCount的方式看起来有点奇怪
ThreadPoolExecutor通过仅仅使用一个AtomicInteger类型就记录了5种线程状态,以及每种状态下线程的数量.
这种设计应该是考虑到线程的数量短时间内不会超过2^29,且减少了需要维护的属性数量,此外还减少了需要并发控制的变量数量.
因为当前存在5种状态,如果每个状态维护,就需要5个,冗长且没必要,而且这些都是存在竞态条件的变量,变量多控制就麻烦.
当然将状态和计数器放在一个变量中,略微增加了该变量的操作步骤会略微损失性能,稍微降低并发能力.

其实现方式很简单,就是通过bit操作,将部分区域标记为特定的用途. ThreadPoolExecutor 就是将最高位的3个bit (1-3位)作为状态描述的部分,剩下的29 bit (4-32位)作为计数器计数部分.

// RUNNING
11100000000000000000000000000000
// SHUTDOWN
0
// STOP
00100000000000000000000000000000
// TIDING
01000000000000000000000000000000
// TERMINATED
01100000000000000000000000000000

如果当前线程数小于核心线程,addWaorker()

  /**
     * Checks if a new worker can be added with respect to current
     * pool state and the given bound (either core or maximum). If so,
     * the worker count is adjusted accordingly, and, if possible, a
     * new worker is created and started, running firstTask as its
     * first task. This method returns false if the pool is stopped or
     * eligible to shut down. It also returns false if the thread
     * factory fails to create a thread when asked.  If the thread
     * creation fails, either due to the thread factory returning
     * null, or due to an exception (typically OutOfMemoryError in
     * Thread.start()), we roll back cleanly.
     *
     * @param firstTask the task the new thread should run first (or
     * null if none). Workers are created with an initial first task
     * (in method execute()) to bypass queuing when there are fewer
     * than corePoolSize threads (in which case we always start one),
     * or when the queue is full (in which case we must bypass queue).
     * Initially idle threads are usually created via
     * prestartCoreThread or to replace other dying workers.
     *
     * @param core if true use corePoolSize as bound, else
     * maximumPoolSize. (A boolean indicator is used here rather than a
     * value to ensure reads of fresh values after checking other pool
     * state).
     * @return true if successful
     */
    private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;

            for (;;) {
                int wc = workerCountOf(c);
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }

        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            w = new Worker(firstTask);
            final Thread t = w.thread;
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get());

                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        workers.add(w);
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                if (workerAdded) {
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }

可以看到,worker是放到了java.util.concurrent.ThreadPoolExecutor#workers的一个hashSet中。
mainLock上锁,创建worker,放入workers,解锁,启动该线程。这样,task直接被执行,没有被放入队列中

如果线程数大于coreSize了,那么会将任务进队,暂时以ArrayBlockingQueue为例

 /**
     * Inserts element at current put position, advances, and signals.
     * Call only when holding lock.
     */
    private void enqueue(E x) {
        // assert lock.getHoldCount() == 1;
        // assert items[putIndex] == null;
        final Object[] items = this.items;
        items[putIndex] = x;
        if (++putIndex == items.length)
            putIndex = 0;
        count++;
        notEmpty.signal();
    }

采用的尾插法,如果index达到length,循环为0,再次插入,插入完毕信号通知work线程

再来看看worker是怎么执行线程的,Worker是java.util.concurrent.ThreadPoolExecutor的内部类,可以访问任务队列

 /**
     * Main worker run loop.  Repeatedly gets tasks from queue and
     * executes them, while coping with a number of issues:
     *
     * 1. We may start out with an initial task, in which case we
     * don't need to get the first one. Otherwise, as long as pool is
     * running, we get tasks from getTask. If it returns null then the
     * worker exits due to changed pool state or configuration
     * parameters.  Other exits result from exception throws in
     * external code, in which case completedAbruptly holds, which
     * usually leads processWorkerExit to replace this thread.
     *
     * 2. Before running any task, the lock is acquired to prevent
     * other pool interrupts while the task is executing, and then we
     * ensure that unless pool is stopping, this thread does not have
     * its interrupt set.
     *
     * 3. Each task run is preceded by a call to beforeExecute, which
     * might throw an exception, in which case we cause thread to die
     * (breaking loop with completedAbruptly true) without processing
     * the task.
     *
     * 4. Assuming beforeExecute completes normally, we run the task,
     * gathering any of its thrown exceptions to send to afterExecute.
     * We separately handle RuntimeException, Error (both of which the
     * specs guarantee that we trap) and arbitrary Throwables.
     * Because we cannot rethrow Throwables within Runnable.run, we
     * wrap them within Errors on the way out (to the thread's
     * UncaughtExceptionHandler).  Any thrown exception also
     * conservatively causes thread to die.
     *
     * 5. After task.run completes, we call afterExecute, which may
     * also throw an exception, which will also cause thread to
     * die. According to JLS Sec 14.20, this exception is the one that
     * will be in effect even if task.run throws.
     *
     * The net effect of the exception mechanics is that afterExecute
     * and the thread's UncaughtExceptionHandler have as accurate
     * information as we can provide about any problems encountered by
     * user code.
     *
     * @param w the worker
     */
    final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
            while (task != null || (task = getTask()) != null) {
                w.lock();
                // If pool is stopping, ensure thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            processWorkerExit(w, completedAbruptly);
        }
    }

首次,执行第一个任务task.run()
紧接着从队列中取任务。

  /**
     * Performs blocking or timed wait for a task, depending on
     * current configuration settings, or returns null if this worker
     * must exit because of any of:
     * 1. There are more than maximumPoolSize workers (due to
     *    a call to setMaximumPoolSize).
     * 2. The pool is stopped.
     * 3. The pool is shutdown and the queue is empty.
     * 4. This worker timed out waiting for a task, and timed-out
     *    workers are subject to termination (that is,
     *    {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
     *    both before and after the timed wait, and if the queue is
     *    non-empty, this worker is not the last thread in the pool.
     *
     * @return task, or null if the worker must exit, in which case
     *         workerCount is decremented
     */
    private Runnable getTask() {
        boolean timedOut = false; // Did the last poll() time out?

        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                decrementWorkerCount();
                return null;
            }

            int wc = workerCountOf(c);

            // Are workers subject to culling?
            boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;

            if ((wc > maximumPoolSize || (timed && timedOut))
                && (wc > 1 || workQueue.isEmpty())) {
                if (compareAndDecrementWorkerCount(c))
                    return null;
                continue;
            }

            try {
                Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
                if (r != null)
                    return r;
                timedOut = true;
            } catch (InterruptedException retry) {
                timedOut = false;
            }
        }
    }

寻循环获取任务,根据线程空闲存活时间

 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
        long nanos = unit.toNanos(timeout);
        final ReentrantLock lock = this.lock;
        lock.lockInterruptibly();
        try {
            while (count == 0) {
                if (nanos <= 0)
                    return null;
                nanos = notEmpty.awaitNanos(nanos);
            }
            return dequeue();
        } finally {
            lock.unlock();
        }
    }

当队列为空,等待keepaliver时间再取获取队伍数据。如果未获取到,说明超时返回空

if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
if (compareAndDecrementWorkerCount©)
return null;
continue;
}
超时,返回空
最终进入runWorker的
finally {
processWorkerExit(w, completedAbruptly);
}

     private void processWorkerExit(Worker w, boolean completedAbruptly) {
         // 因为抛出用户异常导致线程终结,直接使工作线程数减1即可
         // 如果没有任何异常抛出的情况下是通过getTask()返回null引导线程 

         //正常跳出runWorker()方法的while死循环从而正常终结,这种情况下,在getTask()中已经把线程数减1
         if (completedAbruptly)// If abrupt, then workerCount wasn't adjusted

                  decrementWorkerCount();

         final ReentrantLock mainLock = this.mainLock;
         mainLock.lock();
         try {
              // 全局的已完成任务记录数加上此将要终结的Worker中的已完成任务数
              completedTaskCount += w.completedTasks;
              // 工作线程集合中移除此将要终结的Worker
              workers.remove(w);
         } finally {
             mainLock.unlock();
         }
    
        // 见下一小节分析,用于根据当前线程池的状态判断是否需要进行线程池terminate处理
        tryTerminate();

        int c = ctl.get();
        // 如果线程池的状态小于STOP,也就是处于RUNNING或者SHUTDOWN状态的前提下:
        // 1.如果线程不是由于抛出用户异常终结,如果允许核心线程超时,则保持线程池中至少存在一个工作线程
        // 2.如果线程由于抛出用户异常终结,或者当前工作线程数,那么直接添加一个新的非核心线程
        if (runStateLessThan(c, STOP)) {
             if (!completedAbruptly) {
                // 如果允许核心线程超时,最小值为0,否则为corePoolSize
               int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
               // 如果最小值为0,同时任务队列不空,则更新最小值为1
               if (min == 0 && ! workQueue.isEmpty())
                    min = 1;
                    // 工作线程数大于等于最小值,直接返回不新增非核心线程
                   if (workerCountOf(c) >= min)
                     return; // replacement not needed
         }
         addWorker(null, false);
       }
  }

删除一个work线程并停止线程
​总结:代码的后面部分区域,会判断线程池的状态,

如果线程池是RUNNING或者SHUTDOWN状态的前提下,

如果当前的工作线程由于抛出用户异常被终结,那么会新创建一个非核心线程。

如果当前的工作线程并不是抛出用户异常被终结(超时引起线程结束执行)那么会这样处理:
allowCoreThreadTimeOut
第一种:allowCoreThreadTimeOut为true,也就是允许核心线程超时的前提下,

如果任务队列空,则会通过创建一个非核心线程保持线程池中至少有一个工作线程。

第二种:allowCoreThreadTimeOut为false,如果工作线程总数大于corePoolSize则直接返回,
否则创建一个非核心线程,也就是会趋向于保持线程池中的工作线程数量趋向于corePoolSize。
processWorkerExit()执行完毕之后,意味着该工作线程的生命周期已经完结。

线程池停止showDown和showDownNow

什么是中断

interrupt() 方法只是改变中断状态而已,它不会中断一个正在运行的线程。
这一方法实际完成的是,给受阻塞的线程发出一个中断信号,这样受阻线程就得以退出阻塞的状态。
更确切的说,如果线程被Object.wait, Thread.join和Thread.sleep三种方法之一阻塞,此时调用该线程的interrupt()方法,那么该线程将抛出一个 InterruptedException中断异常(该线程必须事先预备好处理此异常),从而提早地终结被阻塞状态。如果线程没有被阻塞,这时调用 interrupt()将不起作用,直到执行到wait(),sleep(),join()时,才马上会抛出 InterruptedException。

  /**
     * Initiates an orderly shutdown in which previously submitted
     * tasks are executed, but no new tasks will be accepted.
     * Invocation has no additional effect if already shut down.
     *
     * <p>This method does not wait for previously submitted tasks to
     * complete execution.  Use {@link #awaitTermination awaitTermination}
     * to do that.
     *
     * @throws SecurityException {@inheritDoc}
     */
    public void shutdown() {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            checkShutdownAccess();
            advanceRunState(SHUTDOWN);
            interruptIdleWorkers();
            onShutdown(); // hook for ScheduledThreadPoolExecutor
        } finally {
            mainLock.unlock();
        }
        tryTerminate();
    }

更改线程池状态为SHUTDOWN,中断所有的空闲线程。

 if (!t.isInterrupted() && w.tryLock()) {
                    try {
                        t.interrupt();
                    } catch (SecurityException ignore) {
                    } finally {
                        w.unlock();
                    }
                }

如果能上锁,就说明是空闲状态的。

shutDownNow和shutDown的区别,会中断所有线程,线程池状态改为STOP

   /**
     * Interrupts all threads, even if active. Ignores SecurityExceptions
     * (in which case some threads may remain uninterrupted).
     */
    private void interruptWorkers() {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            for (Worker w : workers)
                w.interruptIfStarted();
        } finally {
            mainLock.unlock();
        }
    }

效果区别
如果只中断空闲的work线程
那么,首先,线程池不再接收新任务
其次空闲的线程被中断。那么正在运行的线程继续执行,会执行完毕线程池中的任务

showDownNow
中断所有线程,并且设置状态为Stop,所有线程在执行完当前正在执行的事情后,不再能从队列取任务

异常对线程池的影响

  1. service.execute()方式
 } finally {
            processWorkerExit(w, completedAbruptly);
        }

异常直接进入finally processWorkerExit删除一个work线程并停止线程,后面如果需要,线程还会加回来。

 try {
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        afterExecute(task, thrown);
                    }

会把异常抛出去经过java.lang.ThreadGroup#uncaughtException处理,输出异常

  1. submit方式
/**
     * @throws RejectedExecutionException {@inheritDoc}
     * @throws NullPointerException       {@inheritDoc}
     */
    public Future<?> submit(Runnable task) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<Void> ftask = newTaskFor(task, null);
        execute(ftask);
        return ftask;
    }
public void run() {
        if (state != NEW ||
            !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                         null, Thread.currentThread()))
            return;
        try {
            Callable<V> c = callable;
            if (c != null && state == NEW) {
                V result;
                boolean ran;
                try {
                    result = c.call();
                    ran = true;
                } catch (Throwable ex) {
                    result = null;
                    ran = false;
                    setException(ex);
                }
                if (ran)
                    set(result);
            }
        } finally {
            // runner must be non-null until state is settled to
            // prevent concurrent calls to run()
            runner = null;
            // state must be re-read after nulling runner to prevent
            // leaked interrupts
            int s = state;
            if (s >= INTERRUPTING)
                handlePossibleCancellationInterrupt(s);
        }
    }

futureTask的run 方法的不会抛出异常

public interface Future<V> {

    /**
     * Attempts to cancel execution of this task.  This attempt will
     * fail if the task has already completed, has already been cancelled,
     * or could not be cancelled for some other reason. If successful,
     * and this task has not started when {@code cancel} is called,
     * this task should never run.  If the task has already started,
     * then the {@code mayInterruptIfRunning} parameter determines
     * whether the thread executing this task should be interrupted in
     * an attempt to stop the task.
     *
     * <p>After this method returns, subsequent calls to {@link #isDone} will
     * always return {@code true}.  Subsequent calls to {@link #isCancelled}
     * will always return {@code true} if this method returned {@code true}.
     *
     * @param mayInterruptIfRunning {@code true} if the thread executing this
     * task should be interrupted; otherwise, in-progress tasks are allowed
     * to complete
     * @return {@code false} if the task could not be cancelled,
     * typically because it has already completed normally;
     * {@code true} otherwise
     */
    boolean cancel(boolean mayInterruptIfRunning);

    /**
     * Returns {@code true} if this task was cancelled before it completed
     * normally.
     *
     * @return {@code true} if this task was cancelled before it completed
     */
    boolean isCancelled();

    /**
     * Returns {@code true} if this task completed.
     *
     * Completion may be due to normal termination, an exception, or
     * cancellation -- in all of these cases, this method will return
     * {@code true}.
     *
     * @return {@code true} if this task completed
     */
    boolean isDone();

    /**
     * Waits if necessary for the computation to complete, and then
     * retrieves its result.
     *
     * @return the computed result
     * @throws CancellationException if the computation was cancelled
     * @throws ExecutionException if the computation threw an
     * exception
     * @throws InterruptedException if the current thread was interrupted
     * while waiting
     */
    V get() throws InterruptedException, ExecutionException;

    /**
     * Waits if necessary for at most the given time for the computation
     * to complete, and then retrieves its result, if available.
     *
     * @param timeout the maximum time to wait
     * @param unit the time unit of the timeout argument
     * @return the computed result
     * @throws CancellationException if the computation was cancelled
     * @throws ExecutionException if the computation threw an
     * exception
     * @throws InterruptedException if the current thread was interrupted
     * while waiting
     * @throws TimeoutException if the wait timed out
     */
    V get(long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException;
}

submit之后可以通过这几个方法 可以取消执行,获取结果,get方法可以获取异常。,如果没有get,仅仅submit,异常不会输出

工作队列类型

  1. ArrayBlockingQueue 内部由数组实现,创建时需要指定队列长度,核心线程忙时放入队列,队列满后创建线程直到maximumPoolSize,如果队列已经满了,又无法创建新work线程,拒绝任务 ,支持公平或者非公平锁

  2. LinkedBlockingDeque 链表实现,默认队列长度为Integer._MAX_VALUE ,其他方面和_ArrayBlockingQueue一样,适合队列长度大的情况,不支持公平或者非公平锁

    ArrayBlockingQueue基于数组,在生产和消费的时候,是直接将枚举对象插入或移除的,不会产生或销毁任 何 额外的对象实例;
    LinkedBlockingQueue基于链表,在生产和消费的时候,需要把枚举对象转换为Node进行插入或移除, 会 生成一个额外的Node对象,这在长时间内需要高效并发地处理大批量数据的系统中,其对于GC的影响还 是 存在一定的区别。

  • 在使用LinkedBlockingQueue时,若用默认大小且当生产速度大于消费速度时候,有可能会内存溢出。maximumPoolSize也可能失去了意义

  • 在使用ArrayBlockingQueue和LinkedBlockingQueue分别对1000000个简单字符做入队操作时,

     LinkedBlockingQueue的消耗是ArrayBlockingQueue消耗的10倍左右,
     即LinkedBlockingQueue消耗在1500毫秒左右,而ArrayBlockingQueue只需150毫秒左右。
    
  1. SynchronousQueue

SynchronousQueue实现原理(https://blog.csdn.net/yanyan19880509/article/details/52562039
不像ArrayBlockingQueue、LinkedBlockingDeque之类的阻塞队列依赖AQS实现并发操作,SynchronousQueue直接使用CAS实现线程的安全访问。由于源码中充斥着大量的CAS代码,不易于理解,所以按照笔者的风格,接下来会使用简单的示例来描述背后的实现模型。

队列的实现策略通常分为公平模式和非公平模式,接下来将分别进行说明。

公平模式下的模型:
公平模式下,底层实现使用的是TransferQueue这个内部队列,它有一个head和tail指针,用于指向当前正在等待匹配的线程节点。
初始化时,TransferQueue的状态如下:

接着我们进行一些操作:

1、线程put1执行 put(1)操作,由于当前没有配对的消费线程,所以put1线程入队列,自旋一小会后睡眠等待,这时队列状态如下:

2、接着,线程put2执行了put(2)操作,跟前面一样,put2线程入队列,自旋一小会后睡眠等待,这时队列状态如下:

3、这时候,来了一个线程take1,执行了 take操作,由于tail指向put2线程,put2线程跟take1线程配对了(一put一take),这时take1线程不需要入队,但是请注意了,这时候,要唤醒的线程并不是put2,而是put1。为何? 大家应该知道我们现在讲的是公平策略,所谓公平就是谁先入队了,谁就优先被唤醒,我们的例子明显是put1应该优先被唤醒。至于读者可能会有一个疑问,明明是take1线程跟put2线程匹配上了,结果是put1线程被唤醒消费,怎么确保take1线程一定可以和次首节点(head.next)也是匹配的呢?其实大家可以拿个纸画一画,就会发现真的就是这样的。
公平策略总结下来就是:队尾匹配队头出队。
执行后put1线程被唤醒,take1线程的 take()方法返回了1(put1线程的数据),这样就实现了线程间的一对一通信,这时候内部状态如下:

4、最后,再来一个线程take2,执行take操作,这时候只有put2线程在等候,而且两个线程匹配上了,线程put2被唤醒,
take2线程take操作返回了2(线程put2的数据),这时候队列又回到了起点,如下所示:

以上便是公平模式下,SynchronousQueue的实现模型。总结下来就是:队尾匹配队头出队,先进先出,体现公平原则。

非公平模式下的模型:
我们还是使用跟公平模式下一样的操作流程,对比两种策略下有何不同。非公平模式底层的实现使用的是TransferStack,
一个栈,实现中用head指针指向栈顶,接着我们看看它的实现模型:

1、线程put1执行 put(1)操作,由于当前没有配对的消费线程,所以put1线程入栈,自旋一小会后睡眠等待,这时栈状态如下:

2、接着,线程put2再次执行了put(2)操作,跟前面一样,put2线程入栈,自旋一小会后睡眠等待,这时栈状态如下:

3、这时候,来了一个线程take1,执行了take操作,这时候发现栈顶为put2线程,匹配成功,但是实现会先把take1线程入栈,然后take1线程循环执行匹配put2线程逻辑,一旦发现没有并发冲突,就会把栈顶指针直接指向 put1线程

4、最后,再来一个线程take2,执行take操作,这跟步骤3的逻辑基本是一致的,take2线程入栈,然后在循环中匹配put1线程,最终全部匹配完毕,栈变为空,恢复初始状态,如下图所示:

可以从上面流程看出,虽然put1线程先入栈了,但是却是后匹配,这就是非公平的由来。
总结
SynchronousQueue由于其独有的线程一一配对通信机制,在大部分平常开发中,可能都不太会用到,但线程池技术中会有所使用,由于内部没有使用AQS,而是直接使用CAS,所以代码理解起来会比较困难,但这并不妨碍我们理解底层的实现模型,在理解了模型的基础上,有兴趣的话再查阅源码,就会有方向感,看起来也会比较容易,希望本文有所借鉴意义。

  1. DelayQueue
    内部使用优先队列PriorityQueue实现,任务需要继承Delayed

    优先队列原理([https://www.cnblogs.com/yelao/p/12536392.html](https://www.cnblogs.com/yelao/p/12536392.html))
    

PriorityQueue底层原理
Java中PriorityQueue通过二叉小顶堆实现,可以用一棵完全二叉树表示。本文从Queue接口函数出发,结合生动的图解,深入浅出地分析PriorityQueue每个操作的具体过程和时间复杂度,将让读者建立对PriorityQueue建立清晰而深入的认识。

总体介绍

前面以Java ArrayDeque_为例讲解了_Stack_和_Queue,其实还有一种特殊的队列叫做_PriorityQueue_,即优先队列。优先队列的作用是能保证每次取出的元素都是队列中权值最小的(Java的优先队列每次取最小元素,C++的优先队列每次取最大元素)。这里牵涉到了大小关系,元素大小的评判可以通过元素本身的自然顺序(natural ordering),也可以通过构造时传入的比较器Comparator,类似于C++的仿函数)。
Java中_PriorityQueue_实现了_Queue_接口,不允许放入null元素;其通过堆实现,具体说是通过完全二叉树(complete binary tree)实现的小顶堆(任意一个非叶子节点的权值,都不大于其左右子节点的权值),也就意味着可以通过数组来作为_PriorityQueue_的底层实现。
在这里插入图片描述

上图中我们给每个元素按照层序遍历的方式进行了编号,如果你足够细心,会发现父节点和子节点的编号是有联系的,更确切的说父子节点的编号之间有如下关系:
leftNo = parentNo2+1 rightNo = parentNo2+2 parentNo = (nodeNo-1)/2
通过上述三个公式,可以轻易计算出某个节点的父节点以及子节点的下标。这也就是为什么可以直接用数组来存储堆的原因。
PriorityQueue_的peek()和element操作是常数时间,add(), offer(), 无参数的remove()以及poll()方法的时间复杂度都是_log(N)

方法剖析

add()和offer()

add(E e)和offer(E e)的语义相同,都是向优先队列中插入元素,只是Queue接口规定二者对插入失败时的处理不同,前者在插入失败时抛出异常,后则则会返回false。对于_PriorityQueue_这两个方法其实没什么差别。
新加入的元素可能会破坏小顶堆的性质,因此需要进行必要的调整。

//offer(E e)
publicbooleanoffer(E e) {
    if (e == null)//不允许放入null元素
        throw new NullPointerException();
    modCount++;
    int i = size;
    if (i >= queue.length)
        grow(i + 1);//自动扩容
    size = i + 1;
    if (i == 0)//队列原来为空,这是插入的第一个元素
        queue[0] = e;
    else
        siftUp(i, e);//调整
    return true;
}

上述代码中,扩容函数grow()类似于ArrayList里的grow()函数,就是再申请一个更大的数组,并将原数组的元素复制过去,这里不再赘述。需要注意的是siftUp(int k, E x)方法,该方法用于插入元素x并维持堆的特性。

//siftUp()
privatevoidsiftUp(int k, E x) {
    while (k > 0) {
        int parent = (k - 1) >>> 1;//parentNo = (nodeNo-1)/2
        Object e = queue[parent];
        if (comparator.compare(x, (E) e) >= 0)//调用比较器的比较方法
            break;
        queue[k] = e;
        k = parent;
    }
    queue[k] = x;
}

新加入的元素x可能会破坏小顶堆的性质,因此需要进行调整。调整的过程为:从k指定的位置开始,将x逐层与当前点的parent进行比较并交换,直到满足x >= queue[parent]为止。注意这里的比较可以是元素的自然顺序,也可以是依靠比较器的顺序。

element()和peek()

element()和peek()的语义完全相同,都是获取但不删除队首元素,也就是队列中权值最小的那个元素,二者唯一的区别是当方法失败时前者抛出异常,后者返回null。根据小顶堆的性质,堆顶那个元素就是全局最小的那个;由于堆用数组表示,根据下标关系,0下标处的那个元素既是堆顶元素。所以直接返回数组0下标处的那个元素即可
在这里插入图片描述

代码也就非常简洁:

//peek()
public E peek() {
    if (size == 0)
        return null;
    return (E) queue[0];//0下标处的那个元素就是最小的那个
}

remove()和poll()方法的语义也完全相同,都是获取并删除队首元素,区别是当方法失败时前者抛出异常,后者返回null。由于删除操作会改变队列的结构,为维护小顶堆的性质,需要进行必要的调整。
在这里插入图片描述

代码如下:

public E poll() {
    if (size == 0)
        return null;
    int s = --size;
    modCount++;
    E result = (E) queue[0];//0下标处的那个元素就是最小的那个
    E x = (E) queue[s];
    queue[s] = null;
    if (s != 0)
        siftDown(0, x);//调整
    return result;
}

上述代码首先记录0下标处的元素,并用最后一个元素替换0下标位置的元素,之后调用siftDown()方法对堆进行调整,最后返回原来0下标处的那个元素(也就是最小的那个元素)。重点是siftDown(int k, E x)方法,该方法的作用是从k指定的位置开始,将x逐层向下与当前点的左右孩子中较小的那个交换,直到x小于或等于左右孩子中的任何一个为止

//siftDown()
privatevoidsiftDown(int k, E x) {
    int half = size >>> 1;
    while (k < half) {
        //首先找到左右孩子中较小的那个,记录到c里,并用child记录其下标
        int child = (k << 1) + 1;//leftNo = parentNo*2+1
        Object c = queue[child];
        int right = child + 1;
        if (right < size &&
            comparator.compare((E) c, (E) queue[right]) > 0)
            c = queue[child = right];
        if (comparator.compare(x, (E) c) <= 0)
            break;
        queue[k] = c;//然后用c取代原来的值
        k = child;
    }
    queue[k] = x;
}

remove(Object o)

remove(Object o)方法用于删除队列中跟o相等的某一个元素(如果有多个相等,只删除一个),该方法不是_Queue_接口内的方法,而是_Collection_接口的方法。由于删除操作会改变队列结构,所以要进行调整;又由于删除元素的位置可能是任意的,所以调整过程比其它函数稍加繁琐。具体来说,remove(Object o)可以分为2种情况:1. 删除的是最后一个元素。直接删除即可,不需要调整。2. 删除的不是最后一个元素,从删除点开始以最后一个元素为参照调用一次siftDown()即可。此处不再赘述。
在这里插入图片描述

具体代码如下:

//remove(Object o)
publicbooleanremove(Object o) {
    //通过遍历数组的方式找到第一个满足o.equals(queue[i])元素的下标
    int i = indexOf(o);
    if (i == -1)
        return false;
    int s = --size;
    if (s == i) //情况1
        queue[i] = null;
    else {
        E moved = (E) queue[s];
        queue[s] = null;
        siftDown(i, moved);//情况2
        ......
    }
    return true;
}

再看回DelayQueue

/**
     * Retrieves and removes the head of this queue, waiting if necessary
     * until an element with an expired delay is available on this queue.
     *
     * @return the head of this queue
     * @throws InterruptedException {@inheritDoc}
     */
    public E take() throws InterruptedException {
        final ReentrantLock lock = this.lock;
        lock.lockInterruptibly();
        try {
            for (;;) {
                E first = q.peek();
                if (first == null)
                    available.await();
                else {
                    long delay = first.getDelay(NANOSECONDS);
                    if (delay <= 0)
                        return q.poll();
                    first = null; // don't retain ref while waiting
                    if (leader != null)
                        available.await();
                    else {
                        Thread thisThread = Thread.currentThread();
                        leader = thisThread;
                        try {
                            available.awaitNanos(delay);
                        } finally {
                            if (leader == thisThread)
                                leader = null;
                        }
                    }
                }
            }
        } finally {
            if (leader == null && q.peek() != null)
                available.signal();
            lock.unlock();
        }
    }

取首节点,如果首节点剩余时间还大于当前时间,先阻塞,再循环重试。在线程数不能及时处理完毕任务的情况下,可能会导致任务执行不及时。

  1. PriorityBlockingQueue是一个支持优先级的无界阻塞队列,直到系统资源耗尽。默认情况下元素采用自然顺序升序排列。也可以自定义类实现compareTo()方法来指定元素排序规则,或者初始化PriorityBlockingQueue时,指定构造参数Comparator来对元素进行排序。但需要注意的是不能保证同优先级元素的顺序。PriorityBlockingQueue也是基于最小二叉堆实现,使用基于CAS实现的自旋锁来控制队列的动态扩容,保证了扩容操作不会阻塞take操作的执行。

Executors创建线程池

  1. newFixedThreadPool
/**
     * Creates a thread pool that reuses a fixed number of threads
     * operating off a shared unbounded queue, using the provided
     * ThreadFactory to create new threads when needed.  At any point,
     * at most {@code nThreads} threads will be active processing
     * tasks.  If additional tasks are submitted when all threads are
     * active, they will wait in the queue until a thread is
     * available.  If any thread terminates due to a failure during
     * execution prior to shutdown, a new one will take its place if
     * needed to execute subsequent tasks.  The threads in the pool will
     * exist until it is explicitly {@link ExecutorService#shutdown
     * shutdown}.
     *
     * @param nThreads the number of threads in the pool
     * @param threadFactory the factory to use when creating new threads
     * @return the newly created thread pool
     * @throws NullPointerException if threadFactory is null
     * @throws IllegalArgumentException if {@code nThreads <= 0}
     */
    public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>(),
                                      threadFactory);
    }

核心线程和最大线程相同,,使用队列大小Integer._MAX_VALUE_的LinkedBlockingQueue队列

  1. newCachedThreadPool

 /**
     * Creates a thread pool that creates new threads as needed, but
     * will reuse previously constructed threads when they are
     * available.  These pools will typically improve the performance
     * of programs that execute many short-lived asynchronous tasks.
     * Calls to {@code execute} will reuse previously constructed
     * threads if available. If no existing thread is available, a new
     * thread will be created and added to the pool. Threads that have
     * not been used for sixty seconds are terminated and removed from
     * the cache. Thus, a pool that remains idle for long enough will
     * not consume any resources. Note that pools with similar
     * properties but different details (for example, timeout parameters)
     * may be created using {@link ThreadPoolExecutor} constructors.
     *
     * @return the newly created thread pool
     */
    public static ExecutorService newCachedThreadPool() {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>());
    }

核心线程为0,最大线程为Integer.MAX_VALUE。60秒空闲存活,采用一对一同步队列
CachedThreadPool:核心线程数为0,最大线程数为Integer.MAXVALUE。cache是指的线程。
CachedThreadPool应对的是并发数高低非常不稳定的情景,所以核心线程数为0,最大线程数设置的非常大。
SynchronousQueue:是一个不存储数据的阻塞队列,每个take必须等待一个put 操作,反之每个put必须等待一个take 操作。但SynchronousQueue的size不是0,
他只是不存储数据,而是去维护一组阻塞的线程。SynchronousQueue最重要的操作是offer与poll,他可以设置等待时间,一个线程调用offer方法,会在进
行休眠,SynchronousQueue用队列维护因put休眠的线程或者因poll休眠的线程。当一个线程因put而阻塞时,如果在超时时间内被一个线程take,那么该
线程被唤醒并且put成功,反之offer失败( 把这种情况代入到线程池中来,那么线程池就会为这个任务创建新的线程)
使用SynchronousQueue保证了提交的任务被尽量及时执行

  1. newSingleThreadExecutor
   /**
     * Creates an Executor that uses a single worker thread operating
     * off an unbounded queue. (Note however that if this single
     * thread terminates due to a failure during execution prior to
     * shutdown, a new one will take its place if needed to execute
     * subsequent tasks.)  Tasks are guaranteed to execute
     * sequentially, and no more than one task will be active at any
     * given time. Unlike the otherwise equivalent
     * {@code newFixedThreadPool(1)} the returned executor is
     * guaranteed not to be reconfigurable to use additional threads.
     *
     * @return the newly created single-threaded Executor
     */
    public static ExecutorService newSingleThreadExecutor() {
        return new FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue<Runnable>()));
    }

单线程处理长度为Integer._MAX_VALUE的_链表队列

  1. newScheduledThreadPool
   /**
     * Creates a new {@code ScheduledThreadPoolExecutor} with the
     * given core pool size.
     *
     * @param corePoolSize the number of threads to keep in the pool, even
     *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
     * @throws IllegalArgumentException if {@code corePoolSize < 0}
     */
    public ScheduledThreadPoolExecutor(int corePoolSize) {
        super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,
              new DelayedWorkQueue());
    }

使用DelayedWorkQueue作为阻塞队列,并没有像ThreadPoolExecutor类一样开放给用户进行自定义设置。该队列是ScheduledThreadPoolExecutor类的核心组件,后面详细介绍。
这里没有向用户开放maximumPoolSize的设置,原因是DelayedWorkQueue中的元素在大于初始容量16时,会进行扩容,也就是说队列不会装满,maximumPoolSize参数即使设置了也不会生效。
worker线程没有回收时间,原因跟第2点一样,因为不会触发回收操作。所以这里的线程存活时间都设置为0。

任务提交有什么不同

 /**
     * @throws RejectedExecutionException {@inheritDoc}
     * @throws NullPointerException       {@inheritDoc}
     * @throws IllegalArgumentException   {@inheritDoc}
     */
    public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command,
                                                     long initialDelay,
                                                     long delay,
                                                     TimeUnit unit) {
        if (command == null || unit == null)
            throw new NullPointerException();
        if (delay <= 0)
            throw new IllegalArgumentException();
        ScheduledFutureTask<Void> sft =
            new ScheduledFutureTask<Void>(command,
                                          null,
                                          triggerTime(initialDelay, unit),
                                          unit.toNanos(-delay));
        RunnableScheduledFuture<Void> t = decorateTask(command, sft);
        sft.outerTask = t;
        delayedExecute(t);
        return t;
    }

包装了一层ScheduledFutureTask,并计算,初始延迟和周期间隔

     ScheduledFutureTask(Runnable r, V result, long ns, long period) {
            super(r, result);
            this.time = ns;
            this.period = period;
            this.sequenceNumber = sequencer.getAndIncrement();
        }
   private void setNextRunTime() {
            long p = period;
            if (p > 0)
                time += p;
            else
                time = triggerTime(-p);
        }

time属性代表执行时间,优先队列中按照time排序执行,到达time才能被从DelayQueue中取出,初始根据initialDelay计算得出,后续执行完毕后,会将task再次加入到延时队列中周期执行,延时时间根据delay计算

 /**
     * Main execution method for delayed or periodic tasks.  If pool
     * is shut down, rejects the task. Otherwise adds task to queue
     * and starts a thread, if necessary, to run it.  (We cannot
     * prestart the thread to run the task because the task (probably)
     * shouldn't be run yet.)  If the pool is shut down while the task
     * is being added, cancel and remove it if required by state and
     * run-after-shutdown parameters.
     *
     * @param task the task
     */
    private void delayedExecute(RunnableScheduledFuture<?> task) {
        if (isShutdown())
            reject(task);
        else {
            super.getQueue().add(task);
            if (isShutdown() &&
                !canRunInCurrentRunState(task.isPeriodic()) &&
                remove(task))
                task.cancel(false);
            else
                ensurePrestart();
        }
    }

可以看出来,定时线程池没有直接将任务交给worker的逻辑。所有任务都要放入队列中

 /**
     * Same as prestartCoreThread except arranges that at least one
     * thread is started even if corePoolSize is 0.
     */
    void ensurePrestart() {
        int wc = workerCountOf(ctl.get());
        if (wc < corePoolSize)
            addWorker(null, true);
        else if (wc == 0)
            addWorker(null, false);
    }

可以看出来,只要线程数小于coreSize时才会增加work线程,所以设置maximumPoolSize是无效的

delayQueue实现延时执行,那么周期执行怎么实现?

 /**
         * Overrides FutureTask version so as to reset/requeue if periodic.
         */
        public void run() {
            boolean periodic = isPeriodic();
            if (!canRunInCurrentRunState(periodic))
                cancel(false);
            else if (!periodic)
                ScheduledFutureTask.super.run();
            else if (ScheduledFutureTask.super.runAndReset()) {
                setNextRunTime();
                reExecutePeriodic(outerTask);
            }
        }

周期性的执行完毕后,重新让如任务队列中

Logo

华为开发者空间,是为全球开发者打造的专属开发空间,汇聚了华为优质开发资源及工具,致力于让每一位开发者拥有一台云主机,基于华为根生态开发、创新。

更多推荐