ubuntu16.4 caffe opencv3.4 CPU python版本安装
caffe 版本有GPU 、CPU版本,本文为虚拟机上面搭建的CPU版本,采用ubuntu16.4系统,opencv3.4版本。CPU版本不需要cuda 等。安装模块如下:1. 依赖lib安装2.opencv3.4安装3.安装caffe4.pycaffe安装5.验证安装步骤如下:1. 各种依赖包安装感觉不止这多,包括opencv 、lmdb等su
caffe 版本有GPU 、CPU版本,本文为虚拟机上面搭建的CPU版本,采用ubuntu16.4系统,opencv3.4版本。
CPU版本不需要cuda 等。
安装模块如下:
1. 依赖lib安装
2.opencv3.4安装
3.安装caffe
4.pycaffe安装
5.验证
安装步骤如下:
1. 各种依赖包安装
感觉不止这多,包括opencv 、lmdb等
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
sudo apt-get install --no-install-recommends libboost-all-dev
sudo apt-get install libopenblas-dev liblapack-dev libatlas-base-dev
sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
sudo apt-get install git cmake build-essential
sudo apt-get install python-dev python-numpy libavcodec-dev libavformat-dev libswscale-dev
获取opencv包,官网获取最新包
caffe-master 官网获取最新
2. 安装opencv3.4
cd 到opencv-3.4.0
mkdir build
cd build
cmake ..
make
make install
配置opencv的环境变量
vi /etc/profile
export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib
source /etc/profile
安装完毕,检查是否安装成功
pkg-config --libs --cflags opencv
-I/usr/local/include/opencv -I/usr/local/include -L/usr/local/lib -lopencv_dnn -lopencv_ml -lopencv_objdetect -lopencv_shape -lopencv_stitching -lopencv_superres -lopencv_videostab -lopencv_calib3d -lopencv_features2d -lopencv_highgui -lopencv_videoio -lopencv_imgcodecs -lopencv_video -lopencv_photo -lopencv_imgproc -lopencv_flann -lopencv_core
安装成功。
3.安装caffe
解压缩到/usr/local/caffe目录
cp Makefile.config.example Makefile.config
修改Makefile.config,以下为修改项,其他的都注释掉了。
CPU_ONLY := 1
USE_OPENCV := 1
USE_LEVELDB := 1
USE_LMDB := 1
BLAS := open
PYTHON_INCLUDE := /usr/include/python2.7 \
/usr/lib/python2.7/dist-packages/numpy/core/include
PYTHON_LIB := /usr/lib
WITH_PYTHON_LAYER := 1
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial
BUILD_DIR := build
DISTRIBUTE_DIR := distribute
修改Makefile
INCLUDE_DIRS += $(BUILD_INCLUDE_DIR) ./src ./include /usr/include/hdf5/serial
LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5_serial \
lmdb\
opencv_imgcodecs opencv_core opencv_highgui opencv_imgproc opencv_imgcodecs
修改完毕
make all
make runtest
caffe 安装完毕。
当然编译caffe 遇到不少坑,不要慌,关键是修改Makefile.config、Makefile 这两个文件,选择需要的依赖文件和库。
4. 安装pycaffe
sudo apt-get install gfortran
ce /usr/local/caffe/python
安装pycaffe 需要的库
pip install -r requirements.txt
配置/etc/profile
添加pycaffe
export PYTHONPATH="/usr/local/caffe/python"
source /etc/profile
安装完毕。
执行python
import caffe 能正常加载代表安装成功。
5. caffe 验证
minist手写数据库验证
cd /usr/local/caffe/ 目录
执行 获取库,可能有点慢。
./data/mnist/get_mnist.sh
生成以下四个文件
t10k-images-idx3-ubyte
t10k-labels-idx1-ubyte
train-images-idx3-ubyte
train-labels-idx1-ubyte
数据存放到lmdb库中
执行
./examples/mnist/create_mnist.sh
在/usr/local/caffe/examples/mnist 目录下面生成两个lmdb库
mnist_test_lmdb
mnist_train_lmdb
接下来进行训练测试
修改/usr/local/caffe/examples/mnist/lenet_solver.prototxt
默认是GPU模式
solver_mode: CPU
执行
./examples/mnist/train_lenet.sh
可能需要耗时10分钟训练完毕
生成四个文件
lenet_iter_10000.caffemodel
lenet_iter_10000.solverstate
lenet_iter_5000.caffemodel
lenet_iter_5000.solverstate
日志打印
I1227 16:23:15.944425 26074 solver.cpp:447] Snapshotting to binary proto file examples/mnist/lenet_iter_10000.caffemodel
I1227 16:23:15.954344 26074 sgd_solver.cpp:273] Snapshotting solver state to binary proto file examples/mnist/lenet_iter_10000.solverstate
I1227 16:23:15.979086 26074 solver.cpp:310] Iteration 10000, loss = 0.00299525
I1227 16:23:15.979142 26074 solver.cpp:330] Iteration 10000, Testing net (#0)
I1227 16:23:18.947849 26079 data_layer.cpp:73] Restarting data prefetching from start.
I1227 16:23:19.070807 26074 solver.cpp:397] Test net output #0: accuracy = 0.9903
I1227 16:23:19.071033 26074 solver.cpp:397] Test net output #1: loss = 0.029476 (* 1 = 0.029476 loss)
I1227 16:23:19.071115 26074 solver.cpp:315] Optimization Done.
I1227 16:23:19.071183 26074 caffe.cpp:259] Optimization Done.
安装完毕,祝你安装顺利。
更多推荐
所有评论(0)