windows10中远程连接虚拟机上的kafka错误解决办法
kafka部署在虚拟机上,真集群分布式,三台机器。版本为kafka_2.8.0-0.8.0.tar.gz;我想在windows10上的myeclipse10中用java代码远程连接虚拟机上的kafka,结果却报错了:Failed to collate messages by topic, partition due to: fetching topic metadata for topic
kafka部署在虚拟机上,真集群分布式,三台机器。版本为kafka_2.8.0-0.8.0.tar.gz;我想在windows10上的myeclipse10中用java代码远程连接虚拟机上的kafka,结果却报错了:
Failed to collate messages by topic, partition due to: fetching topic metadata for topics [Set(test)] from broker [ArrayBuffer(id:0,host:172.16.4.214,port:9092)] failed
ERROR Producer connection to slave1:9092 unsuccessful (kafka.producer.SyncProducer)
java.net.ConnectException: Connection refused
网上有人说出现上述错误是因为没有配置advertised.host.name,但是我打开server.properties里面根本没有这个属性,只有host.name,而host.name我早已经配置为主机名,既然他没有那个属性,我硬加了一个advertised.host.name属性,值也为主机名。然后重启发现根本没用。错误照样;还有网友说kafka自带的zookeeper jar包与我们自己安装zookeeper版本不一致,但是我更换后一致后还是不行,所以我自己研究尝试找到以下方法:
解决方法:
1.kafka安装在3台虚拟机上,那么3台机器都要执行开启命令(#kafka-server-start.sh ./kafka/config/server.properties &),它跟zookeeper一样都需要分别启动(我这里说的zookeeper并非hbase自带),我刚开始在hadoop主节点上安装的kafka,然后将配置分发到其他从节点,我以为只要在主节点上启动kafka就行,结果证明是错的,所以报了上述错误
2.我忘了配置producer.properties,用#vi producer.properties 打开后,按i键进入编辑模式,找到metadata.broker.list这一行,去掉前面的注释,改为metadata.broker.list=master:9092,slave1:9092,slave3:9092 然后保存退出,因为真集群分布,这里必须改,另外我这里写master和slave这些名字,是因为我在三台虚拟上都配置了hosts文件(ip和主机映射),windows10上面的hosts我也配置了,如果你没配置还是写ip吧。
3.consumer.properties里面的zookeeper.connect也要改为zookeeper.connect=master:2181,slave1:2181,slave3:2181
至此运行成功
下面贴上我的代码:
在classpath(src下面)下新添两个属性文件:producer.properties和consumer.properties
producer.properties内容如下
---------------------------------------------------------------------------------------------------------------------------------------
metadata.broker.list=master:9092,slave1:9092,slave3:9092
producer.type=sync
compression.codec=0
serializer.class=kafka.serializer.StringEncoder
---------------------------------------------------------------------------------------------------------------------------------------
consumer.properties内容如下
---------------------------------------------------------------------------------------------------------------------------------------
zookeeper.connect=master:2181,slave1:2181,slave3:2181
zookeeper.connectiontimeout.ms=1000000
group.id=test-group
auto.offset.reset=smallest
auto.commit.enable=true
---------------------------------------------------------------------------------------------------------------------------------------
生产者代码
import java.io.File;
import java.io.FileInputStream;
import java.util.Properties;
import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;
public class MyProducer {
/**
* @param args
*/
public static void main(String[] args) {
Producer<String,String> inner=null;
try {
Properties properties=new Properties();
properties.load(new FileInputStream(new File("E:/javaws/bigdata/src/producer.properties")));
ProducerConfig config=new ProducerConfig(properties);
inner=new Producer<String, String>(config);
int i=0;
while(true){
KeyedMessage<String,String> km=new KeyedMessage<String, String>("test-topic",
"this is a sample"+i);
inner.send(km);
i++;
Thread.sleep(2000);
}
} catch (Exception e) {
e.printStackTrace();
}finally{
if(inner!=null){
inner.close();
}
}
}
}
消费者代码
import java.io.File;
import java.io.FileInputStream;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import kafka.consumer.Consumer;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
public class MyConsumer {
/**
* @param args
*/
public static void main(String[] args) {
ConsumerConfig config=null;
ConsumerConnector connector=null;
ExecutorService threadPool=null;
try {
Properties properties=new Properties();
properties.load(new FileInputStream(new File("E:/javaws/bigdata/src/consumer.properties")));
config=new ConsumerConfig(properties);
connector=Consumer.createJavaConsumerConnector(config);
Map<String,Integer> topics=new HashMap<String,Integer>();
topics.put("test-topic",2);//第二个参数是分区数partitionsNum
Map<String,List<KafkaStream<byte[],byte[]>>> streams=connector.createMessageStreams(topics);
List<KafkaStream<byte[],byte[]>> partitions=streams.get("test-topic");
threadPool=Executors.newFixedThreadPool(2);
for(final KafkaStream<byte[],byte[]> partition:partitions){
threadPool.execute(new MessageRunner(partition));
}
System.in.read();
threadPool.shutdownNow();
} catch (Exception e) {
e.printStackTrace();
}finally{
connector.shutdown();
}
}
}
更多推荐
所有评论(0)