本文主要说明如何使用Excel和Java建立上篇文章讨论的模型。包括移动平均法、简单指数平滑法、Holt模型和Winter模型,内附java源码。

目录

一、需求历史数据

 二、移动平均法

  1.基于EXCEL的实现

  2.基于java的实现

 三、简单指数平滑法

1.基于EXCEL的实现

2.基于java的实现

 四、趋势调整的指数平滑法(Holt模型)

1.基于EXCEL的实现

2.基于java的实现

 五、趋势和季节调整的指数平滑法(Winter模型)

1.基于EXCEL的实现

2.基于java的实现


一、需求历史数据

        下面有一段时期的需求历史数据。为了选择一种最合适的适应性预测方法对未来四个季度进行分析,需要用到前面文章提到的预测方法进行分析和预测。下面是MoonLight公司一段时期内的需求历史数据。

 二、移动平均法

  1.基于EXCEL的实现

        首先决定对四期的移动平均法的预测结果进行检验。EXCEL的实现过程在这里不再详述,结果如下:

         正如上图所示,TS很好地保持在±6的范围内,这说明该方法预测不存在任何显著的偏差,但是MAD在第12期相当大,MAPE也相当大。

        因此,使用四期的移动平均法,得到未来四期(13~16)的预测值如下:

         由于MAD在第12期为9719,因此预测的标准差为1.25*9719=12149。这相对于预测值来说,预测误差的标准差是非常大的。

  2.基于java的实现

public class HistoryData {
    //过去12期的历史需求
    double[] demands = {8000,13000,23000,34000,10000,18000,23000,38000,12000,13000,32000,41000};
}
import java.util.Arrays;

public class MovingAverageMethod {
    private double[] demands;

    public MovingAverageMethod(double[] demands) {
        this.demands = demands;
    }

    public void calculation(Integer periods){
        if(periods>=demands.length){
            System.out.println("移动平均时期数大于需求时期数,不可计算!");
            return;
        }
        double[] level = new double[demands.length-periods+1];
        for (int i = 0; i < demands.length-periods+1; i++) {
            double periodSum = 0;
            for (int j = i; j < i+periods; j++) {
                periodSum+=demands[j];

            }
            level[i] = periodSum/periods;
        }
        System.out.println("level="+Arrays.toString(level));
        double[] forecast = new double[demands.length-periods];
        for (int i = 0; i < demands.length-periods; i++) {
            forecast[i] = level[i];
        }
        System.out.println("forecast="+Arrays.toString(forecast));
        double[] error = new double[demands.length-periods];
        for (int i = 0; i < demands.length-periods; i++) {
            error[i] = forecast[i]-demands[i+periods];
        }
        System.out.println("error="+Arrays.toString(error));
        double[] absoluteError = new double[demands.length-periods];
        for (int i = 0; i < demands.length - periods; i++) {
            absoluteError[i]=Math.abs(error[i]);
        }
        System.out.println("absoluteError="+Arrays.toString(absoluteError));
        double[] mse = new double[demands.length-periods];
        for (int i = 0; i <demands.length-periods; i++) {
            double sumSquares = 0;
            for (int j = 0; j < i+1; j++) {
               sumSquares = sumSquares + Math.pow(error[j],2);
            }
            mse[i] = sumSquares/(i+1);
        }
        System.out.println("mse="+Arrays.toString(mse));
        double[] mad = new double[demands.length-periods];
        for (int i = 0; i <demands.length-periods; i++) {
            double sumSquares = 0;
            for (int j = 0; j < i+1; j++) {
                sumSquares = sumSquares +absoluteError[j];
            }
            mad[i] = sumSquares/(i+1);
        }
        System.out.println("mad="+Arrays.toString(mad));
        double[] errorPercentage = new double[demands.length-periods];
        for (int i = 0; i < demands.length-periods; i++) {
            errorPercentage[i]=100*absoluteError[i]/demands[i+periods];
        }
        System.out.println("errorPercentage="+Arrays.toString(errorPercentage));
        double[] mape = new double[demands.length-periods];
        for (int i = 0; i < demands.length-periods; i++) {
            double sum = 0;
            for (int j = 0; j < i + 1; j++) {
                sum = sum + errorPercentage[j];
            }
           mape[i] = sum/(i+1);
        }
        System.out.println("mape="+Arrays.toString(mape));
        double[] ts = new double[demands.length-periods];
        for (int i = 0; i < demands.length-periods; i++) {
            double sum = 0;
            for (int j = 0; j < i + 1; j++) {
                sum = sum + error[j];
            }
            ts[i] = sum/mad[i];
        }
        System.out.println("ts="+Arrays.toString(ts));
        System.out.println("============================================");
        System.out.println("未来"+periods+"期的预测值="+level[level.length-1]);
        System.out.println("预测的标准差="+1.25*mad[mad.length-1]);
    }
}
public class Test {
    public static void main(String[] args) {
        MovingAverageMethod method = new MovingAverageMethod(new HistoryData().demands);
        method.calculation(4);
    }
}

  运行结果如下:

 三、简单指数平滑法

1.基于EXCEL的实现

        接着,决定对α=0.1的简单指数平湖法的预测结果进行检验。根据上文,估计第0期的初始需求水平为第1~12期的实际需求的平均值(L0=22083),结果如下:

         正如上图所示,TS在合理范围内,表示没有发生显著的偏差。但是MAD却相当大,为10208;MAPE为59%。

        因此,使用四期的移动平均法,得到未来四期(13~16)的预测值如下:

         在这种情况下,MAD在第12期为10208,而MAPE在第12期为59%,因此该方法预测误差的标准差估计为1.25*10208=12760,这个值是相当大的。

2.基于java的实现

public class HistoryData {
    //过去12期的历史需求
    double[] demands = {8000,13000,23000,34000,10000,18000,23000,38000,12000,13000,32000,41000};
}
import java.util.Arrays;

public class SimpleExponentialSmoothingMethod {
    private double[] demands;
    private double a;

    public SimpleExponentialSmoothingMethod(double[] demands, double a) {
        this.demands = demands;
        this.a = a;
    }

    public void calculation(){
        if(a<=0||a>=1){
            System.out.println("a小于0或大于1,无法计算!");
            return;
        }
        double[] level = new double[demands.length+1];
        for (int i = 0; i < demands.length; i++) {
            level[0] += demands[i] / demands.length;
        }
        for (int i = 1; i < demands.length+1; i++) {
            level[i]=a*demands[i-1]+(1-a)*level[i-1];
        }
        System.out.println("level="+ Arrays.toString(level));

        double[] forecast = new double[demands.length];
        for (int i = 0; i < demands.length; i++) {
            forecast[i] = level[i];
        }
        System.out.println("forecast="+Arrays.toString(forecast));
        double[] error = new double[demands.length];
        for (int i = 0; i < demands.length; i++) {
            error[i] = forecast[i]-demands[i];
        }
        System.out.println("error="+Arrays.toString(error));
        double[] absoluteError = new double[demands.length];
        for (int i = 0; i < demands.length; i++) {
            absoluteError[i]=Math.abs(error[i]);
        }
        System.out.println("absoluteError="+Arrays.toString(absoluteError));
        double[] mse = new double[demands.length];
        for (int i = 0; i <demands.length; i++) {
            double sumSquares = 0;
            for (int j = 0; j < i+1; j++) {
                sumSquares = sumSquares + Math.pow(error[j],2);
            }
            mse[i] = sumSquares/(i+1);
        }
        System.out.println("mse="+Arrays.toString(mse));
        double[] mad = new double[demands.length];
        for (int i = 0; i <demands.length; i++) {
            double sumSquares = 0;
            for (int j = 0; j < i+1; j++) {
                sumSquares = sumSquares +absoluteError[j];
            }
            mad[i] = sumSquares/(i+1);
        }
        System.out.println("mad="+Arrays.toString(mad));
        double[] errorPercentage = new double[demands.length];
        for (int i = 0; i < demands.length; i++) {
            errorPercentage[i]=100*absoluteError[i]/demands[i];
        }
        System.out.println("errorPercentage="+Arrays.toString(errorPercentage));
        double[] mape = new double[demands.length];
        for (int i = 0; i < demands.length; i++) {
            double sum = 0;
            for (int j = 0; j < i + 1; j++) {
                sum = sum + errorPercentage[j];
            }
            mape[i] = sum/(i+1);
        }
        System.out.println("mape="+Arrays.toString(mape));
        double[] ts = new double[demands.length];
        for (int i = 0; i < demands.length; i++) {
            double sum = 0;
            for (int j = 0; j < i + 1; j++) {
                sum = sum + error[j];
            }
            ts[i] = sum/mad[i];
        }
        System.out.println("ts="+Arrays.toString(ts));
        System.out.println("============================================");
        System.out.println("未来4期的预测值="+level[level.length-1]);
        System.out.println("预测的标准差="+1.25*mad[mad.length-1]);
    }
}
public class Test {
    public static void main(String[] args) {
        SimpleExponentialSmoothingMethod method = new SimpleExponentialSmoothingMethod(new HistoryData().demands,0.1);
        method.calculation();
    }
}

运行结果如下:

 四、趋势调整的指数平滑法(Holt模型)

1.基于EXCEL的实现

    接着,决定对α=0.1,β=0.2的Holt模型的预测结果进行检验。根据上文,对需求和时间进行线性回归,得到L0=12015,T0=1549。结果如下:

      正如上图所示,TS在合理范围内,表示没有发生显著的偏差。但是MAD却相当大,为8836;MAPE为52%。

        因此,使用Holt模型,得到未来四期(13~16)的预测值如下:

         在这种情况下,MAD在第12期为8836,因此该方法预测误差的标准差估计为1.25*10208=11045,这个值是仍然偏大。

2.基于java的实现

public class HistoryData {
    //过去12期的历史需求
    double[] demands = {8000,13000,23000,34000,10000,18000,23000,38000,12000,13000,32000,41000};
    //时期t
    double[] time = {1,2,3,4,5,6,7,8,9,10,11,12};
}
import java.util.Random;

public class SimpleRegression {
    public static double[] calculate(double[] xData, double[] yData){
        double sumX = 0;
        double sumY = 0;
        double sumXY = 0;
        double sumx2 = 0;
        double pjX,pjY;
        double b;
        double a;
        for(int i=0 ; i<xData.length ;  i++)
        {
            double X = xData[i];
            double Y  = yData[i];
            sumX = sumX +X;
            sumY = sumY + Y;
            sumXY = sumXY + X*Y;
            sumx2 = sumx2 + X*X;
        }
        pjX = sumX / xData.length;
        pjY = sumY / xData.length;

        b = (sumXY - xData.length*pjX*pjY)/(sumx2 - xData.length*pjX*pjX);
        a = pjY - b*pjX;
        System.out.println("斜率:"+b);
        System.out.println("截距:"+a);
        double[] data = new double[2];
        data[0]=a;
        data[1]=b;
        return data;
    }
}
import java.util.Arrays;

public class HoltMethod {
    private HistoryData historyData;
    private double a;
    private double b;

    public HoltMethod(HistoryData historyData, double a, double b) {
        this.historyData = historyData;
        this.a = a;
        this.b = b;
    }

    public void calculation(){
        if(a<=0||a>=1){
            System.out.println("a小于0或大于1,无法计算!");
            return;
        }
        if(b<=0||b>=1){
            System.out.println("b小于0或大于1,无法计算!");
            return;
        }
        double[] regressionData = SimpleRegression.calculate(historyData.time, historyData.demands);
        double[] level = new double[historyData.demands.length + 1];
        double[] trend = new double[historyData.demands.length + 1];
        level[0]=regressionData[0];
        trend[0]=regressionData[1];
        for (int i = 1; i < historyData.demands.length + 1; i++) {
            level[i]=a*historyData.demands[i-1]+(1-a)*(level[i-1]+trend[i-1]);
            trend[i]=b*(level[i]-level[i-1])+(1-b)*trend[i-1];
        }
        double[] forecast = new double[historyData.demands.length];
        for (int i = 0; i < historyData.demands.length; i++) {
            forecast[i] = level[i]+trend[i];
        }
        System.out.println("forecast="+Arrays.toString(forecast));
        double[] error = new double[historyData.demands.length];
        for (int i = 0; i < historyData.demands.length; i++) {
            error[i] = forecast[i]-historyData.demands[i];
        }
        System.out.println("error="+Arrays.toString(error));
        double[] absoluteError = new double[historyData.demands.length];
        for (int i = 0; i < historyData.demands.length; i++) {
            absoluteError[i]=Math.abs(error[i]);
        }
        System.out.println("absoluteError="+Arrays.toString(absoluteError));
        double[] mse = new double[historyData.demands.length];
        for (int i = 0; i <historyData.demands.length; i++) {
            double sumSquares = 0;
            for (int j = 0; j < i+1; j++) {
                sumSquares = sumSquares + Math.pow(error[j],2);
            }
            mse[i] = sumSquares/(i+1);
        }
        System.out.println("mse="+Arrays.toString(mse));
        double[] mad = new double[historyData.demands.length];
        for (int i = 0; i <historyData.demands.length; i++) {
            double sumSquares = 0;
            for (int j = 0; j < i+1; j++) {
                sumSquares = sumSquares +absoluteError[j];
            }
            mad[i] = sumSquares/(i+1);
        }
        System.out.println("mad="+Arrays.toString(mad));
        double[] errorPercentage = new double[historyData.demands.length];
        for (int i = 0; i < historyData.demands.length; i++) {
            errorPercentage[i]=100*absoluteError[i]/historyData.demands[i];
        }
        System.out.println("errorPercentage="+Arrays.toString(errorPercentage));
        double[] mape = new double[historyData.demands.length];
        for (int i = 0; i < historyData.demands.length; i++) {
            double sum = 0;
            for (int j = 0; j < i + 1; j++) {
                sum = sum + errorPercentage[j];
            }
            mape[i] = sum/(i+1);
        }
        System.out.println("mape="+Arrays.toString(mape));
        double[] ts = new double[historyData.demands.length];
        for (int i = 0; i < historyData.demands.length; i++) {
            double sum = 0;
            for (int j = 0; j < i + 1; j++) {
                sum = sum + error[j];
            }
            ts[i] = sum/mad[i];
        }
        System.out.println("ts="+Arrays.toString(ts));
        System.out.println("============================================");
        for (int i = 1; i < 5; i++) {
            double result = level[level.length-1]+i*trend[trend.length-1];
            System.out.println("未来"+i+"期的预测值="+result);
        }
        System.out.println("预测的标准差="+1.25*mad[mad.length-1]);
    }
}
public class Test {
    public static void main(String[] args) {
        HoltMethod method = new HoltMethod(new HistoryData(),0.1,0.2);
        method.calculation();
    }
}

运行结果如下:

 五、趋势和季节调整的指数平滑法(Winter模型)

1.基于EXCEL的实现

接着,决定对α=0.05,β=0.1,γ=0.05的Holt模型的预测结果进行检验。根据上文,进行线性回归和求季节性因素,得到L0=12015,T0=1549,S1=0.47,S2=0.68,S3=1.17,S4=1.67。结果如下:

         正如上图所示,TS在合理范围内,表示没有发生显著的偏差。但是MAD(1469)和MAPE(8%)都明显小于其他方法。

        因此,使用Winter模型,得到未来四期(13~16)的预测值如下:

         在这种情况下,MAD在第12期为1469,因此该方法预测误差的标准差估计为1.25*1469=1836,这个值是最小的。

2.基于java的实现

public class HistoryData {
    //过去12期的历史需求
    double[] demands = {8000,13000,23000,34000,10000,18000,23000,38000,12000,13000,32000,41000};
    //时期t
    double[] time = {1,2,3,4,5,6,7,8,9,10,11,12};
}
import java.util.ArrayList;
import java.util.Arrays;

public class ExcludingSeasonality {
    public static ArrayList<double[]> calculate(int period,HistoryData data){
        if((period&1)!=1){
            int first = 1+period/2;
            int last = data.demands.length-period/2;
            double[] series = new double[last-first+1];
            double[] pureDemand = new double[last-first+1];
            for (int i = 0; i < last-first+1; i++) {
                series[i]=data.time[first-1+i];
                double sum = 0;
                for (int j = first+i-period/2; j <first+i+period/2-1; j++) {
                    sum+=data.demands[j];
                }
                pureDemand[i] = (data.demands[first-3+i]+data.demands[first+i+1]+2*sum)/(last-first+1);
            }
            System.out.println(Arrays.toString(series));
            System.out.println(Arrays.toString(pureDemand));
            ArrayList<double[]> objects = new ArrayList<>();
            objects.add(series);
            objects.add(pureDemand);
            return objects;
        } else {
            int first = 1 + (period-1)/2;
            int last = data.demands.length-(period-1)/2;
            System.out.println(first);
            System.out.println(last);
            double[] series = new double[last-first+1];
            double[] pureDemand = new double[last-first+1];
            for (int i = 0; i < last-first+1; i++) {
                series[i]=data.time[first-1+i];
                double sum = 0;
                for (int j = first+i-(period-1)/2; j <first+i+(period-1)/2-1; j++) {
                    sum+=data.demands[j];
                }
                pureDemand[i] = sum/(last-first+1);
            }
            System.out.println(Arrays.toString(series));
            System.out.println(Arrays.toString(pureDemand));
            ArrayList<double[]> objects = new ArrayList<>();
            objects.add(series);
            objects.add(pureDemand);
            return objects;
        }
    }
}
import java.util.Random;

public class SimpleRegression {
    public static double[] calculate(double[] xData, double[] yData){
        double sumX = 0;
        double sumY = 0;
        double sumXY = 0;
        double sumx2 = 0;
        double pjX,pjY;
        double b;
        double a;
        for(int i=0 ; i<xData.length ;  i++)
        {
            double X = xData[i];
            double Y  = yData[i];
            sumX = sumX +X;
            sumY = sumY + Y;
            sumXY = sumXY + X*Y;
            sumx2 = sumx2 + X*X;
        }
        pjX = sumX / xData.length;
        pjY = sumY / xData.length;

        b = (sumXY - xData.length*pjX*pjY)/(sumx2 - xData.length*pjX*pjX);
        a = pjY - b*pjX;
        System.out.println("斜率:"+b);
        System.out.println("截距:"+a);
        double[] data = new double[2];
        data[0]=a;
        data[1]=b;
        return data;
    }
}
import java.util.ArrayList;
import java.util.Arrays;

public class WinterMethod {
    private HistoryData historyData;
    private double a;
    private double b;
    private double c;
    private int period;

    public WinterMethod(HistoryData historyData, double a, double b,double c,int period) {
        this.historyData = historyData;
        this.a = a;
        this.b = b;
        this.c = c;
        this.period=period;
    }

    public void calculation(){
        ArrayList<double[]> excludeData = ExcludingSeasonality.calculate(period, historyData);
        double[] regressionData = SimpleRegression.calculate(excludeData.get(0), excludeData.get(1));
        System.out.println("回归结果:"+Arrays.toString(regressionData));
        //剔除季节性因素后的需求
        double[] pureDemands=new double[historyData.demands.length];
        double[] seasonalFactors=new double[historyData.demands.length];
        for (int i = 0; i < pureDemands.length; i++) {
            pureDemands[i] = regressionData[0]+regressionData[1]*historyData.time[i];
            seasonalFactors[i]=historyData.demands[i]/pureDemands[i];
        }
        double[] seasonalFactor = new double[period];
        for (int i = 0; i <period; i++) {
            double sum = 0;
            for (int j = 0; j < historyData.demands.length/period; j++) {
                sum+=seasonalFactors[i+period*j];
            }
            seasonalFactor[i]=sum/(historyData.demands.length/period);
        }
        System.out.println("季节因素:"+Arrays.toString(seasonalFactor));
        //求解
        double[] level = new double[historyData.demands.length + 1];
        double[] trend = new double[historyData.demands.length + 1];
        double[] season = new double[historyData.demands.length+period];
        level[0]=regressionData[0];
        trend[0]=regressionData[1];
        for (int i = 0; i < period; i++) {
            season[i]=seasonalFactor[i];
        }
        for (int i = 1; i < historyData.demands.length + 1; i++) {
            level[i]=a*(historyData.demands[i-1]/season[i-1])+(1-a)*(level[i-1]+trend[i-1]);
            trend[i]=b*(level[i]-level[i-1])+(1-b)*trend[i-1];
            if(i<=12){
                season[i+period-1]=c*(historyData.demands[i-1]/level[i])+(1-c)*season[i-1];
            }
        }
        System.out.println("level:"+Arrays.toString(level));
        System.out.println("trend:"+Arrays.toString(trend));
        System.out.println("season:"+Arrays.toString(season));
        double[] forecast = new double[historyData.demands.length];
        for (int i = 0; i < historyData.demands.length; i++) {
            forecast[i] = (level[i]+trend[i])*season[i];
        }
        System.out.println("forecast="+Arrays.toString(forecast));
        double[] error = new double[historyData.demands.length];
        for (int i = 0; i < historyData.demands.length; i++) {
            error[i] = forecast[i]-historyData.demands[i];
        }
        System.out.println("error="+Arrays.toString(error));
        double[] absoluteError = new double[historyData.demands.length];
        for (int i = 0; i < historyData.demands.length; i++) {
            absoluteError[i]=Math.abs(error[i]);
        }
        System.out.println("absoluteError="+Arrays.toString(absoluteError));
        double[] mse = new double[historyData.demands.length];
        for (int i = 0; i <historyData.demands.length; i++) {
            double sumSquares = 0;
            for (int j = 0; j < i+1; j++) {
                sumSquares = sumSquares + Math.pow(error[j],2);
            }
            mse[i] = sumSquares/(i+1);
        }
        System.out.println("mse="+Arrays.toString(mse));
        double[] mad = new double[historyData.demands.length];
        for (int i = 0; i <historyData.demands.length; i++) {
            double sumSquares = 0;
            for (int j = 0; j < i+1; j++) {
                sumSquares = sumSquares +absoluteError[j];
            }
            mad[i] = sumSquares/(i+1);
        }
        System.out.println("mad="+Arrays.toString(mad));
        double[] errorPercentage = new double[historyData.demands.length];
        for (int i = 0; i < historyData.demands.length; i++) {
            errorPercentage[i]=100*absoluteError[i]/historyData.demands[i];
        }
        System.out.println("errorPercentage="+Arrays.toString(errorPercentage));
        double[] mape = new double[historyData.demands.length];
        for (int i = 0; i < historyData.demands.length; i++) {
            double sum = 0;
            for (int j = 0; j < i + 1; j++) {
                sum = sum + errorPercentage[j];
            }
            mape[i] = sum/(i+1);
        }
        System.out.println("mape="+Arrays.toString(mape));
        double[] ts = new double[historyData.demands.length];
        for (int i = 0; i < historyData.demands.length; i++) {
            double sum = 0;
            for (int j = 0; j < i + 1; j++) {
                sum = sum + error[j];
            }
            ts[i] = sum/mad[i];
        }
        System.out.println("ts="+Arrays.toString(ts));
        System.out.println("============================================");
        for (int i = 1; i < 5; i++) {
            double result = (level[level.length-1]+i*trend[trend.length-1])*season[historyData.demands.length+period-5+i];
            System.out.println("未来"+i+"期的预测值="+result);
        }
        System.out.println("预测的标准差="+1.25*mad[mad.length-1]);
    }
}
public class Test {
    public static void main(String[] args) {
        WinterMethod method = new WinterMethod(new HistoryData(),0.05,0.1,0.1,4);
        method.calculation();
    }
}

运行结果如下:

 

Logo

华为开发者空间,是为全球开发者打造的专属开发空间,汇聚了华为优质开发资源及工具,致力于让每一位开发者拥有一台云主机,基于华为根生态开发、创新。

更多推荐