opencv照片拼接android,在android 上,使用Opencv3.0实现图像无缝拼接,Fast查找特征点,BruteForce进行匹配...
//// Created by fuzr1 on 2017/8/20.////first step add below#include #include #include #include #include #include #include //first step end//second step//#include "stdafx.h"//second step end#include "o
//
// Created by fuzr1 on 2017/8/20.
//
//first step add below
#include
#include
#include
#include
#include
#include
#include
//first step end
//second step
//#include "stdafx.h"
//second step end
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/features2d/features2d.hpp"
using namespace cv;
using namespace std;
#define LOG_TAG "CombinePicture"
#define LOGD(...) ((void)__android_log_print(ANDROID_LOG_DEBUG, LOG_TAG, __VA_ARGS__))
//third step
#ifdef __cplusplus
extern "C" {
#endif
//third step end
//计算原始图像点位在通过矩阵变换后在目标图像上对应位置
Point2f getTransformPoint(const Point2f originalPoint, const Mat &transformMaxtri);
// fiveth step
JNIEXPORT jlong JNICALL Java_com_lenovo_camera_orbmatch_MainActivity_doCombinePicture(JNIEnv *env, jclass clz, jlong img1, jlong img2)
//int main()
//fiveth step end
{
Mat image01 = Mat(*(Mat*)img1);
cvtColor(image01, image01, CV_BGRA2BGR);
Mat image02 = Mat(*(Mat*)img2);
cvtColor(image02, image02, CV_BGRA2BGR);
if (image01.empty() || image02.empty())
{
// printf("the loader the picture failed");
// waitKey();
LOGD("there is some image input wrong");
return 0;//图像没有所有读取成功
}
//imshow("拼接图像1", image01);
// imshow("拼接图像2", image02);
double time = getTickCount();
//灰度图转换
Mat image1, image2;
cvtColor(image01, image1, CV_RGB2GRAY);
cvtColor(image02, image2, CV_RGB2GRAY);
//提取特征点
//SiftFeatureDetector siftDetector(800); // 海塞矩阵阈值
Ptr fastDetector = FastFeatureDetector::create();
vector keyPoint1, keyPoint2;
fastDetector->detect(image1, keyPoint1);
fastDetector->detect(image2, keyPoint2);
//特征点描述,为下边的特征点匹配作准备
Ptr BriskDescriptor = BRISK::create();
Mat imageDesc1, imageDesc2;
BriskDescriptor->compute(image1, keyPoint1, imageDesc1);
BriskDescriptor->compute(image2, keyPoint2, imageDesc2);
//得到匹配特征点,并提取最优配对
Ptr matcher = DescriptorMatcher::create("BruteForce");
//FlannBasedMatcher matcher;
vector matchePoints;
matcher->match(imageDesc1, imageDesc2, matchePoints, Mat());
if (matchePoints.size() < 10)
{
LOGD("the match point is below 10");
//waitKey();
return 0;
}
sort(matchePoints.begin(), matchePoints.end()); //特征点排序,opencv按照匹配点准确度排序
//获取排在前N个的最优匹配特征点
vector imagePoints1, imagePoints2;
for (int i = 0; i<10; i++)
{
imagePoints1.push_back(keyPoint1[matchePoints[i].queryIdx].pt);
imagePoints2.push_back(keyPoint2[matchePoints[i].trainIdx].pt);
}
//获取图像1到图像2的投影映射矩阵,尺寸为3*3
Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC);
Mat adjustMat;
adjustMat = (Mat_(3, 3) << 1.0, 0, image01.cols, 0, 1.0, 0, 0, 0, 1.0);//向后偏移image01.cols矩阵
//Mat adjustMat =Mat::eye(cv::Size(3,3),CV_64F);
// adjustMat.at(0, 2) = image01.cols;
Mat adjustHomo = adjustMat*homo;//矩阵相乘,先偏移
//获取最强配对点(就是第一个配对点)在原始图像和矩阵变换后图像上的对应位置,用于图像拼接点的定位
Point2f originalLinkPoint, targetLinkPoint, basedImagePoint;
originalLinkPoint = keyPoint1[matchePoints[0].queryIdx].pt;
targetLinkPoint = getTransformPoint(originalLinkPoint, adjustHomo);
basedImagePoint = keyPoint2[matchePoints[0].trainIdx].pt;
//图像配准
Mat imageTransform;
//将图片1进行映射到图像2,原本映射后x值为负值,可是把映射矩阵向后偏移image01.cols矩阵
//咱们很难判断出拼接后图像的大小尺寸,为了尽量保留原来的像素,咱们尽量的大一些,对于拼接后的图片能够进一步剪切无效或者不规则的边缘
warpPerspective(image01, imageTransform, adjustMat*homo, Size(image02.cols + image01.cols + 10, image02.rows));
//在最强匹配点的位置处衔接,最强匹配点左侧是图1,右侧是图2,这样直接替换图像衔接很差,光线有突变
//Mat ROIMat = image02(Rect(Point(basedImagePoint.x, 0), Point(image02.cols, image02.rows)));
//ROIMat.copyTo(Mat(imageTransform1, Rect(targetLinkPoint.x, 0, image02.cols - basedImagePoint.x + 1, image02.rows)));
//在最强匹配点左侧的重叠区域进行累加,是衔接稳定过渡,消除突变
Mat image1Overlap, image2Overlap; //图1和图2的重叠部分
image1Overlap = imageTransform(Rect(Point(targetLinkPoint.x - basedImagePoint.x, 0), Point(targetLinkPoint.x, image02.rows)));
image2Overlap = image02(Rect(0, 0, image1Overlap.cols, image1Overlap.rows));
Mat image1ROICopy = image1Overlap.clone(); //复制一份图1的重叠部分
for (int i = 0; i
{
for (int j = 0; j
{
double weight;
weight = (double)j / image1Overlap.cols; //随距离改变而改变的叠加系数
image1Overlap.at(i, j)[0] = (1 - weight)*image1ROICopy.at(i, j)[0] + weight*image2Overlap.at(i, j)[0];
image1Overlap.at(i, j)[1] = (1 - weight)*image1ROICopy.at(i, j)[1] + weight*image2Overlap.at(i, j)[1];
image1Overlap.at(i, j)[2] = (1 - weight)*image1ROICopy.at(i, j)[2] + weight*image2Overlap.at(i, j)[2];
}
}
Mat ROIMat = image02(Rect(Point(image1Overlap.cols, 0), Point(image02.cols, image02.rows))); //图2中不重合的部分
ROIMat.copyTo(Mat(imageTransform, Rect(targetLinkPoint.x, 0, ROIMat.cols, image02.rows))); //不重合的部分直接衔接上去
time = getTickCount() - time;
time /= getTickFrequency();
LOGD("match time=%f\n", time);
// namedWindow("拼接结果", 0);
// imshow("拼接结果", imageTransform);
// imwrite("matchResult.jpg", imageTransform);
// waitKey();
// return 0;
Mat *ret = new Mat(imageTransform);
return (jlong) ret;
}
//计算原始图像点位在通过矩阵变换后在目标图像上对应位置
Point2f getTransformPoint(const Point2f originalPoint, const Mat &transformMaxtri)
{
Mat originelP, targetP;
originelP = (Mat_(3, 1) << originalPoint.x, originalPoint.y, 1.0);
targetP = transformMaxtri*originelP;
float x = targetP.at(0, 0) / targetP.at(2, 0);
float y = targetP.at(1, 0) / targetP.at(2, 0);
return Point2f(x, y);
}
//forrth step
#ifdef __cplusplus
}
#endif
//fourth step end
更多推荐
所有评论(0)