思路:

成环啦,就把它复制一遍再求呗,

每次合并两堆石子,那么不管是怎样合并,最后一次合并都会得到sum(这两堆石子数)的分数

再加上分别得到这两堆石子所得分数

dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+1][j])

dp[i][j]+=sum[i…j]

代码如下:



#include<iostream>
#include<cstdio>
#include<algorithm>
#include<string>
#include<cstring>
#include<queue>
#include<stack>
#include<cmath>
#include<set>
#include<map>
using namespace std;
#define ll long long

typedef pair<int,int>P;
const int INF=0x3f3f3f3f;
const int N=205;
int a[2*N],sum[2*N];
int dp[2*N][2*N],dp1[2*N][2*N];
int main(){
    int n;
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        scanf("%d",&a[i]);
        a[i+n]=a[i];
    }
    for(int i=1;i<=2*n;i++){
        sum[i]=sum[i-1]+a[i];
    }
    //dp[i][j]:=i到j合并
    for(int r=2;r<=2*n;r++){
        for(int i=1;i<=2*n-r+1;i++){//开头
            int j=i+r-1;//结尾
            dp[i][j]=dp[i][i]+dp[i+1][j];
            dp1[i][j]=dp1[i][i]+dp1[i+1][j];
            for(int k=i+1;k<j;k++){//中间
                dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]);
                dp1[i][j]=max(dp1[i][j],dp1[i][k]+dp1[k+1][j]);
            }
            dp[i][j]+=sum[j]-sum[i-1];
            dp1[i][j]+=sum[j]-sum[i-1];
        }
    }
    int mx=0,mi=1e9;
    for(int i=1;i<=n;i++){
        mi=min(mi,dp[i][i+n-1]);
        mx=max(mx,dp1[i][i+n-1]);
    }
    printf("%d\n%d\n",mi,mx);
}

思路:

参考的这位聚聚的代码

要注意的是,这有三边形以上的才有结果,所以,区间大小从3开始

代码如下:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<string>
#include<cstring>
#include<queue>
#include<stack>
#include<cmath>
#include<set>
#include<map>
using namespace std;
#define ll long long

typedef pair<int,int>P;
const int INF=0x3f3f3f3f;
const int N=55,Mod=10000;
ll a[N];

struct Bignum{
    int len,s[500];
    Bignum(){
        memset(s,0,sizeof(s));
        len = 1;
    }
    Bignum operator +(const Bignum &A)const{
        Bignum B;
        B.len = max(len,A.len);
        for(int i = 0;i< B.len; i++){
            B.s[i] =B.s[i] + A.s[i] + s[i];
            B.s[i+1] += B.s[i]/10;
            B.s[i] = B.s[i]%10;
        }
        if(B.s[B.len]) B.len ++;
        return B;
    }
    bool operator <(const Bignum &A)const{
        if(len != A.len) return len < A.len;
        for(int i= len-1; i >=0 ; i--){
            if(s[i] != A.s[i]) return s[i] < A.s[i];
        }
        return false;
    }
    Bignum operator *(const Bignum &A)const{
        Bignum B;
        B.len = len+A.len-1;
        for(int i = 0;i< A.len; i++){
            for(int j=0;j< len;j++){
                B.s[i+j] =B.s[i+j] + A.s[i] * s[j];
                B.s[i+j+1] += B.s[i+j]/10;
                B.s[i+j] = B.s[i+j]%10;
            }
        }

        if(B.s[B.len]) B.len ++;
        return B;
    }
    void write(){
        int k = len-1;
        while(s[k]==0 && k >0) k--;
        for(int i = k;i>=0;i--)   cout << s[i];
    }
}dp[51][51];

Bignum change(long long x){  //将一个整数变成数组存储的Bignum类型
    Bignum t;
    int cnt =0;
    while(x!=0){
        t.s[cnt++] = x%10;
        x /= 10;
    }
    t.len = cnt;
    return t;
}


int main(){
    int n;
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        scanf("%lld",&a[i]);
    }
    for(int r=3;r<=n;r++){
        for(int i=1;i<=n-r+1;i++){
            int j=i+r-1;
            dp[i][j].len=400;
            dp[i][j].s[399]=1;
            for(int k=i+1;k<j;k++){
                Bignum t=change(a[i])*change(a[j])*change(a[k]);
                Bignum tp=t+dp[i][k]+dp[k][j];
                if(tp<dp[i][j])dp[i][j]=tp;
            }
        }
    }
    dp[1][n].write();
}

思路:

题意花里胡哨的_(:з」∠)_

其实就是:所有数字,刚开始都是分隔开的,然后,两两合并,合并所得的值就是(合并后区间左端点+合并后区间右端点)*分割点。

转移方程:dp[i][j]=dp[i][k]+dp[k+1][j]+(a[i]+a[j])*a[k]

输出的时候用bfs输出!

代码如下:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<string>
#include<cstring>
#include<queue>
#include<stack>
#include<cmath>
#include<set>
#include<map>
using namespace std;
#define ll long long

typedef pair<int,int>P;
const int INF=0x3f3f3f3f;
const int N=305;
int a[N],n;
int dp[N][N];
int se[N][N];

void output(){
    queue<P>Q;
    printf("%d",se[1][n]);
    Q.push(P(1,se[1][n]));
    Q.push(P(se[1][n]+1,n));
    while(Q.size()){
        P p=Q.front();
        Q.pop();
        if(p.first==p.second)continue;
        int t=se[p.first][p.second];
        printf(" %d",t);
        Q.push(P(p.first,t));
        Q.push(P(t+1,p.second));
    }
    printf("\n");
}

int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        scanf("%d",&a[i]);
    }
    for(int r=2;r<=n;r++){
        for(int i=1;i<=n-r+1;i++){
            int j=i+r-1;
            for(int k=i;k<j;k++){//从k处合并
                int t=dp[i][k]+dp[k+1][j]+(a[i]+a[j])*a[k];
                if(dp[i][j]<t){
                    dp[i][j]=t;
                    se[i][j]=k;
                }
            }
        }
    }
    printf("%d\n",dp[1][n]);
    output();
}

 

Logo

华为开发者空间,是为全球开发者打造的专属开发空间,汇聚了华为优质开发资源及工具,致力于让每一位开发者拥有一台云主机,基于华为根生态开发、创新。

更多推荐