小Q的歌单 | 卢卡斯定理
好久不见数论的题,碰到组合数+取模 马上想到卢卡斯定理 (其实组合数的递推式也可以做Ac代码#include <iostream>#include<algorithm>using namespace std;typedef long long ll;ll f[101];ll mod = 1000000007;void init() {f[0] = 1;for (ll i =
·
好久不见数论的题,碰到组合数+取模 马上想到卢卡斯定理 (其实组合数的递推式也可以做
Ac代码
#include <iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
ll f[101];
ll mod = 1000000007;
void init() {
f[0] = 1;
for (ll i = 1; i <= 100; i++)
f[i] = (i * f[i - 1]) % mod;
}
long long pow1(long long n, long long m) {
long long ans = 1;
while (m > 0) {
if (m & 1)ans = (ans * n) % mod;
m = m >> 1;
n = (n * n) % mod;
}
return ans;
}
long long lucas(ll n, ll m) {
ll ans = 1;
while (n && m) {
ll x, y;
x = n % mod;
y = m % mod;
if (x < y)
return 0;
// printf("%lld %lld %lld\n",f[x],f[y],f[x-y]);
ans = ans * f[x] * pow1(f[y] * f[x - y] % mod, mod - 2) % mod;
n /= mod;
m /= mod;
}
return ans % mod;
}
ll quick_multi(ll a, ll b) {
ll ans = 0;
while (b) {
if (b & 1)
ans = (ans + a)%mod;
a = (a + a)%mod;
b >>=1;
}
return ans;
}
int main() {
ll K, X, A, Y, B;
init();
while (cin >> K) {
cin >> A >> X >> B >> Y;
ll ans = 0;
for (int i = 0; i <= X; i++)
for (int j = 0; j <= Y; j++) {
if ((i * A + j * B) == K) {
ans += quick_multi(lucas(X, i) % mod , lucas(Y, j) % mod) % mod;
}
}
cout << ans%mod << endl;
}
return 0;
}
更多推荐
已为社区贡献1条内容
所有评论(0)