将tflite格式的模型部署在安卓移动端详细步骤
将tflite格式的模型部署在安卓移动端详细步骤
·
将tflite格式的模型部署在安卓移动端详细步骤
步骤一
先将tflite模型放到安卓项目的assets中。
步骤二
将tensorflow-lite库添加到您的应用程序中。这可以通过将以下行添加到build.gradle文件的依赖项部分中来完成:
implementation 'org.tensorflow:tensorflow-lite:+'
步骤三
完成此操作后,您可以导入TensorFlow Lite解释器。解释器通过提供一组输入来加载模型并允许您运行它。TensorFlow Lite然后将执行模型并编写输出,实际上就是这么简单。
import org.tensorflow.lite.Interpreter;
步骤四
protected Interpreter tflite;
tflite = new Interpreter(loadModelFile(activity));
步骤五
GitHub上的TensorFlow Lite示例中有一个辅助功能。只需确保getModelPath()返回一个指向资源文件夹中文件的字符串,然后模型就会加载。
/** Memory-map the model file in Assets. */
private MappedByteBuffer loadModelFile(Activity activity) throws IOException {
AssetFileDescriptor fileDescriptor = activity.getAssets().openFd(getModelPath());
FileInputStream inputStream = new FileInputStream(fileDescriptor.getFileDescriptor());
FileChannel fileChannel = inputStream.getChannel();
long startOffset = fileDescriptor.getStartOffset();
long declaredLength = fileDescriptor.getDeclaredLength();
return fileChannel.map(FileChannel.MapMode.READ_ONLY, startOffset, declaredLength);
}
步骤六
然后,要对图像进行分类,您所需要做的就是在Interpeter上调用run方法,将图像数据和标签数组传递给它,其余的工作将完成:
tflite.run(imgData, labelProbArray);
TensorFlow 官方示例
git clone https://www.github.com/tensorflow/tensorflow
更多推荐
已为社区贡献3条内容
所有评论(0)