C++数论库:NTL
NTL官网:https://libntl.org/doc/tour.htmlNTL is a high-performance, portable C++ library providing data structures and algorithms for arbitrary length integers; for vectors, matrices, and polynomials ove
NTL
官网:https://libntl.org/doc/tour.html
NTL is a high-performance, portable C++ library providing data structures and algorithms for arbitrary length integers; for vectors, matrices, and polynomials over the integers and over finite fields; and for arbitrary precision floating point arithmetic.
NTL provides high quality implementations of state-of-the-art algorithms for:
- arbitrary length integer arithmetic and arbitrary precision floating point arithmetic;
- polynomial arithmetic over the integers and finite fields including basic arithmetic, polynomial factorization, irreducibility testing, computation of minimal polynomials, traces, norms, and more;
- lattice basis reduction, including very robust and fast implementations of Schnorr-Euchner, block Korkin-Zolotarev reduction, and the new Schnorr-Horner pruning heuristic for block Korkin-Zolotarev;
- basic linear algebra over the integers, finite fields, and arbitrary precision floating point numbers.
类型介绍
The basic ring classes are:
ZZ
: big integersZZ_p
: big integers modulo pzz_p
: integers mod “single precision” pGF2
: integers mod 2ZZX
: univariate polynomials over ZZZZ_pX
: univariate polynomials over ZZ_pzz_pX
: univariate polynomials over zz_pGF2X
: polynomials over GF2ZZ_pE
: ring/field extension over ZZ_pzz_pE
: ring/field extension over zz_pGF2E
: ring/field extension over GF2ZZ_pEX
: univariate polynomials over ZZ_pEzz_pEX
: univariate polynomials over zz_pEGF2EX
: univariate polynomials over GF2E
使用
- 常用函数
SetSeed(const ZZ& s)
:设置PRF种子
RandomBnd(ZZ& x, const ZZ& n)
: x ∈ { 0 , 1 , ⋯ n − 1 } x \in \{0,1,\cdots n-1\} x∈{0,1,⋯n−1},如果 n ≤ 0 n \le 0 n≤0 那么 x = 0 x=0 x=0
RandomBits(ZZ& x, long l)
:随机生成 l l l比特的整数
ZZ p(17)
:初始化整数为17,这里参数类型是long
p = to_ZZ("123")
:读入字符串,可输入大整数
GenPrime(p, 8)
:随机生成8比特素数
ZZ_p::init(p)
:初始化环 Z p Z_p Zp
ZZ_p a(2)
:初始化为 2 m o d p 2 \mod p 2modp,这里参数类型是long
random(a)
:随机生成 Z p Z_p Zp中元素
ZZ_pX m
: Z p [ x ] Z_p[x] Zp[x]中的多项式,记录为向量 Z p n Z_p^n Zpn
SetCoeff(m, 5)
:将 x 5 x^5 x5系数置为 1
m[0]=1
:将 x 0 x^0 x0系数置为 1
BuildIrred(m, 3)
:随机生成3次不可约多项式
ZZ_pE::init(m)
:初始化环 Z p [ x ] / ( m ( x ) ) Z_p[x]/(m(x)) Zp[x]/(m(x)),若 p p p是素数且 m ( x ) m(x) m(x)是d次不可约多项式,那么它同构于有限域 G F ( p d ) GF(p^d) GF(pd)
ZZ_pEX f, g, h
: G F ( p d ) [ x ] GF(p^d)[x] GF(pd)[x]上的多项式,记录为向量 G F ( p d ) n GF(p^d)^n GF(pd)n
random(f, 5)
:随机生成5次多项式
h = sqr(g) % f
:计算 h ≡ g 2 m o d f h \equiv g^2 \mod f h≡g2modf
- 环 G F ( p d ) [ x ] / ( x n − 1 ) GF(p^d)[x]/(x^n-1) GF(pd)[x]/(xn−1)上多项式运算:
#include <iostream>
#include <NTL/ZZ_p.h> // integers mod p
#include <NTL/ZZ_pX.h> // polynomials over ZZ_p
#include <NTL/ZZ_pE.h> // ring/field extension of ZZ_p
#include <NTL/ZZ_pEX.h> // polynomials over ZZ_pE
#include <NTL/ZZ_pXFactoring.h>
#include <NTL/ZZ_pEXFactoring.h>
using namespace std;
using namespace NTL;
#pragma comment(lib, "NTL")
int main()
{
ZZ p(17); //初始化为17
//群Z_p
ZZ_p::init(p);
//随机生成Z_p[x]中的d次不可约多项式
int d = 4;
ZZ_pX m;
BuildIrred(m, d);
//域GF(p^d) = Z_p[x]/m(x)
ZZ_pE::init(m);
//GF(p^d)[x]中的多项式
ZZ_pEX f, g, h;
// f(x) = x^8 - 1
SetCoeff(f, 8); //将 x^8 系数置为 1
SetCoeff(f, 0, -1); //将 x^0 系数置为 -1
//随机生成5次多项式
random(g, 5);
// 环上多项式的运算:h = g^2 mod f
h = sqr(g) % f;
cout << "p = " << p << endl;
cout << "d = " << d << endl;
cout << "m(x) = " << m << endl;
cout << "f = " << f << endl;
cout << "g = " << g << endl;
cout << "h = " << h << endl;
return 0;
}
更多推荐
所有评论(0)