8个常用泰勒公式:

sin⁡x=x−16x3+O(x3)arcsin⁡x=x+16x3+O(x3)\sin x=x-\frac{1}{6} x^{3}+O\left(x^{3}\right) \quad \arcsin x=x+\frac{1}{6} x^{3}+O\left(x^{3}\right)sinx=x61x3+O(x3)arcsinx=x+61x3+O(x3)

cos⁡x=1−12x2+x44!+0(x4)ln⁡(1+x)=x−12x2+13x3+O(x3)\cos x=1-\frac{1}{2} x^{2}+\frac{x^{4}}{4 !}+0\left(x^{4}\right) \quad \ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+O(x^{3})cosx=121x2+4!x4+0(x4)ln(1+x)=x21x2+31x3+O(x3)

tan⁡x=x+13x3+O(x3)arctan⁡x=x−13x3+O(x3)\tan x=x+\frac{1}{3} x^{3}+O( x^{3}) \quad \arctan x=x-\frac{1}{3} x^{3}+O\left(x^{3}\right)tanx=x+31x3+O(x3)arctanx=x31x3+O(x3)

ex=1+x+12x2+16x3+0(x3)(1+x)a=1+ax++a(a−1)2!x2+O(x2)e^{x}=1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+0\left(x^{3}\right) \quad(1+x)^{a}=1+a x++\frac{a(a-1)}{2 !} x^{2}+O\left(x^{2}\right)ex=1+x+21x2+61x3+0(x3)(1+x)a=1+ax++2!a(a1)x2+O(x2)
泰勒公式是等号而不是等价,这就使所有函数转化为幂函数,在利用高阶无穷小被低阶吸收的原理,可以秒杀大部分极限题。

Logo

华为开发者空间,是为全球开发者打造的专属开发空间,汇聚了华为优质开发资源及工具,致力于让每一位开发者拥有一台云主机,基于华为根生态开发、创新。

更多推荐