拓扑排序(Topological Sorting)
一、什么是拓扑排序在图论中,拓扑排序(Topological Sorting)是一个有向无环图(DAG, Directed Acyclic Graph)的所有顶点的线性序列。且该序列必须满足下面两个条件:每个顶点出现且只出现一次。若存在一条从顶点 A 到顶点 B 的路径,那么在序列中顶点 A 出现在顶点 B 的前面。有向无环图(DAG)才有拓扑排序,非DAG图没有拓扑排序一说。例如,下面这个图
一、什么是拓扑排序
在图论中,拓扑排序(Topological Sorting)是一个有向无环图(DAG, Directed Acyclic Graph)的所有顶点的线性序列。且该序列必须满足下面两个条件:
- 每个顶点出现且只出现一次。
- 若存在一条从顶点 A 到顶点 B 的路径,那么在序列中顶点 A 出现在顶点 B 的前面。
有向无环图(DAG)才有拓扑排序,非DAG图没有拓扑排序一说。
例如,下面这个图:
它是一个 DAG 图,那么如何写出它的拓扑排序呢?这里说一种比较常用的方法:
- 从 DAG 图中选择一个 没有前驱(即入度为0)的顶点并输出。
- 从图中删除该顶点和所有以它为起点的有向边。
- 重复 1 和 2 直到当前的 DAG 图为空或当前图中不存在无前驱的顶点为止。后一种情况说明有向图中必然存在环。
于是,得到拓扑排序后的结果是 { 1, 2, 4, 3, 5 }。
通常,一个有向无环图可以有一个或多个拓扑排序序列。
二、拓扑排序的应用
拓扑排序通常用来“排序”具有依赖关系的任务。
比如,如果用一个DAG图来表示一个工程,其中每个顶点表示工程中的一个任务,用有向边 <A,B> <script type="math/tex" id="MathJax-Element-1"> </script>表示在做任务 B 之前必须先完成任务 A。故在这个工程中,任意两个任务要么具有确定的先后关系,要么是没有关系,绝对不存在互相矛盾的关系(即环路)。
三、拓扑排序的实现
根据上面讲的方法,我们关键是要维护一个入度为0的顶点的集合。
图的存储方式有两种:邻接矩阵和邻接表。这里我们采用邻接表来存储图,C++代码如下:
#include<iostream>
#include <list>
#include <queue>
using namespace std;
/************************类声明************************/
class Graph
{
int V; // 顶点个数
list<int> *adj; // 邻接表
queue<int> q; // 维护一个入度为0的顶点的集合
int* indegree; // 记录每个顶点的入度
public:
Graph(int V); // 构造函数
~Graph(); // 析构函数
void addEdge(int v, int w); // 添加边
bool topological_sort(); // 拓扑排序
};
/************************类定义************************/
Graph::Graph(int V)
{
this->V = V;
adj = new list<int>[V];
indegree = new int[V]; // 入度全部初始化为0
for(int i=0; i<V; ++i)
indegree[i] = 0;
}
Graph::~Graph()
{
delete [] adj;
delete [] indegree;
}
void Graph::addEdge(int v, int w)
{
adj[v].push_back(w);
++indegree[w];
}
bool Graph::topological_sort()
{
for(int i=0; i<V; ++i)
if(indegree[i] == 0)
q.push(i); // 将所有入度为0的顶点入队
int count = 0; // 计数,记录当前已经输出的顶点数
while(!q.empty())
{
int v = q.front(); // 从队列中取出一个顶点
q.pop();
cout << v << " "; // 输出该顶点
++count;
// 将所有v指向的顶点的入度减1,并将入度减为0的顶点入栈
list<int>::iterator beg = adj[v].begin();
for( ; beg!=adj[v].end(); ++beg)
if(!(--indegree[*beg]))
q.push(*beg); // 若入度为0,则入栈
}
if(count < V)
return false; // 没有输出全部顶点,有向图中有回路
else
return true; // 拓扑排序成功
}
测试如下DAG图:
int main()
{
Graph g(6); // 创建图
g.addEdge(5, 2);
g.addEdge(5, 0);
g.addEdge(4, 0);
g.addEdge(4, 1);
g.addEdge(2, 3);
g.addEdge(3, 1);
g.topological_sort();
return 0;
}
输出结果是 4, 5, 2, 0, 3, 1。这是该图的拓扑排序序列之一。
每次在入度为0的集合中取顶点,并没有特殊的取出规则,随机取出也行,这里使用的queue
。取顶点的顺序不同会得到不同的拓扑排序序列,当然前提是该图存在多个拓扑排序序列。
由于输出每个顶点的同时还要删除以它为起点的边,故上述拓扑排序的时间复杂度为 O(V+E) 。
另外,拓扑排序还可以采用 深度优先搜索(DFS)的思想来实现,详见《topological sorting via DFS》。
更多推荐
所有评论(0)