【Flink】flink on k8s 部署方案
Flink平台部署方案持续保持更新有些部署yaml借鉴的文章忘记哪里搬过来了额,但是经过自己测试过可行再次表谢感谢1. HDFS部署 (k8s)可以单独create -f 部署,也可以基于helm统一部署1.1 hdfs-conf.yamlapiVersion: v1kind: ConfigMapmetadata:namespace: dev-flink-platname: kube-hadoop
1. HDFS部署 (k8s)
hdfs的作用是用户保存flink的检查点与保持点
但是大数据集群目前还是建议单独使用CDH或者HDP部署
目前文中的这种hdfs on k8s方式做高可用不太方便
1.1 配置文件
hdfs-conf.yaml
apiVersion: v1
kind: ConfigMap
metadata:
namespace: dev-flink-plat
name: kube-hadoop-conf
data:
HDFS_MASTER_SERVICE: hadoop-hdfs-master
HDOOP_YARN_MASTER: hadoop-yarn-master
hdfs-service.yaml
apiVersion: v1
kind: Service
metadata:
namespace: dev-flink-plat
name: hadoop-hdfs-master
spec:
type: NodePort
selector:
app: hdfs-master
ports:
- name: rpc
port: 9000
targetPort: 9000
- name: http
port: 50070
targetPort: 50070
nodePort: 32007
hdfs-namenode.yaml
没有配置secondary-namenode,而是通过ReplicationController的replicas来保证namenode的副本数
apiVersion: v1
kind: ReplicationController
metadata:
namespace: dev-flink-plat
name: hdfs-master
labels:
app: hdfs-master
spec:
replicas: 1
selector:
name: hdfs-master
template:
metadata:
labels:
name: hdfs-master
spec:
containers:
- name: hdfs-master
image: kubeguide/hadoop:latest
imagePullPolicy: IfNotPresent
ports:
- containerPort: 9000
- containerPort: 50070
env:
- name: HADOOP_NODE_TYPE
value: namenode
- name: HDFS_MASTER_SERVICE
valueFrom:
configMapKeyRef:
name: kube-hadoop-conf
key: HDFS_MASTER_SERVICE
- name: HDOOP_YARN_MASTER
valueFrom:
configMapKeyRef:
name: kube-hadoop-conf
key: HDOOP_YARN_MASTER
restartPolicy: Always
hdfs-datanode.yaml
apiVersion: v1
kind: Pod
metadata:
namespace: dev-flink-plat
name: hadoop-datanode
labels:
app: hadoop-datanode
spec:
containers:
- name: hadoop-datanode
image: kubeguide/hadoop:latest
imagePullPolicy: IfNotPresent
ports:
- containerPort: 9000
- containerPort: 50070
env:
- name: HADOOP_NODE_TYPE
value: datanode
- name: HDFS_MASTER_SERVICE
valueFrom:
configMapKeyRef:
name: kube-hadoop-conf
key: HDFS_MASTER_SERVICE
- name: HDOOP_YARN_MASTER
valueFrom:
configMapKeyRef:
name: kube-hadoop-conf
key: HDOOP_YARN_MASTER
restartPolicy: Always
2. Flink部署 (k8s)
2.1 Flink部署方式
- flink standalone
- flink on yarn
- flink on k8s
我们采用的是flink on k8s的部署方式
2.2 flink on k8s 部署方案
Flink 选择 Kubernetes 的主要原因是结合 Flink 和 Kubernetes 的长稳性。
① Flink 特性:提供的实时服务是需要长时间、稳定地运行,常应用于电信网络质量监控、实时风控、实时推荐等稳定性要求较高的场景;
② Kubernetes 优势:为应用提供了部署、管理能力,同时保证其稳定运行。Kubernetes 具有很好的生态,可以集成各种运维工具,例如 prometheus、主流日志采集工具等。Kubernetes 具有很好的扩缩容机制,可以大大提高资源利用率。
Session 模式
预先构建 Flink 集群,且该集群长期处于运行状态,但不能自动扩缩容。用户通过 client 提交作业到运行中的 JobManager,而 JobManager 将任务分配到运行中的 TaskManager
优点 | 缺点 |
---|---|
Flink 集群是预先启动运行的。用户提交作业的时候,作业可以立即分配到 TaskManager,即作业启动速度快 | 资源利用率低,提前确定 TaskManager 数量,如果作业需要的资源少,则大量 TaskManager 处于闲置状态。反正 TaskManager 资源不足 |
作业隔离性差,多个作业的任务存在资源竞争,相互影响。如果一个作业异常导致 TaskManager 挂了,该 TaskManager 上的全部作业都会被重启 | |
Application 模式
每个作业独占一个 Flink 集群,当作业完成后,集群也会被回收。
注意:
① Flink 镜像需要包含作业即Application 依赖的 Class
② 启动作业的时候需要指定 Main 函数入口类
优点 | 缺点 |
---|---|
一个作业独占一个集群,作业的隔离性好 | 资源利用率低,提前确定 TaskManager 数量,如果作业需要的资源少,则大量 TaskManager 处于闲置状态。反之 TaskManager 资源不足。同时,JobManager 不能复用 |
Flink Native Session 模式
类似 Session 模式,需要预先构建 JobManager。不同点是用户通过 Flink Client 向 JobManager 提交作业后,根据作业需要的 Slot 数量,JobManager 直接向 Kubernetes 申请 TaskManager 资源,最后把作业提交到 TaskManager 上。
优点 | 缺点 |
---|---|
TaskManager 的资源是实时的、按需进行的创建,对资源的利用率更高 | 作业真正运行起来的时间较长,因为需要等待 TaskManager 创建 |
Flink Native Application 模式
类似 Application 模式,每个作业独占一个 Flink 集群,当作业完成后,集群也会被回收。不同点是 Native 特性,即 Flink 直接与 Kubernetes 进行通信并按需申请资源,无需用户指定 TaskManager 资源的数量。
优点 | 缺点 |
---|---|
一个作业独占一个集群,作业的隔离性好 | 一个作业独占一个集群,JobManager 不能复用 |
资源利用率相对较高,按需申请 JobManager 和 TaskManager | 作业启动较慢,在作业提交后,才开始创建 JobManager 和 TaskManager |
运行模式总结
模式 | 隔离性 | 作业启动时间 | 资源利用率 | 资源按需创建 |
---|---|---|---|---|
Session | 弱,作业共享集群 | 较短,立即启动 | 较低,集群长期存在 | 否 |
Application | 强,作业独享集群 | 最长,等待集群创建完成 | 一般,作业结束后释放资源 | 否 |
Native Session | 弱,作业共享集群 | 一般,等待 TaskManager 创建 | 较低,TaskManager 按需申请 | 是 |
Native Application | 强,作业独占集群 | 一般, 等待集群创建完成 | 最好,集群按需创建 | 是 |
Kubernetes 高可用 Services
Session 模式和 Application 模式集群都支持使用 Kubernetes 高可用服务。需要在 flink-configuration-configmap.yaml 中添加如下 Flink 配置项。
Note 配置了 HA 存储目录相对应的文件系统必须在运行时可用。请参阅自定义Flink 镜像和启用文件系统插件获取更多相关信息。
apiVersion: v1
kind: ConfigMap
metadata:
name: flink-config
labels:
app: flink
data:
flink-conf.yaml: |+
...
kubernetes.cluster-id: <cluster-id>
high-availability: org.apache.flink.kubernetes.highavailability.KubernetesHaServicesFactory
high-availability.storageDir: hdfs:///flink/recovery
restart-strategy: fixed-delay
restart-strategy.fixed-delay.attempts: 10
...
此外,你必须使用具有创建、编辑、删除 ConfigMap 权限的 service 账号启动 JobManager 和 TaskManager pod。请查看如何为 pod 配置 service 账号获取更多信息。
当启用了高可用,Flink 会使用自己的 HA 服务进行服务发现。因此,JobManager Pod 会使用 IP 地址而不是 Kubernetes 的 service 名称来作为 jobmanager.rpc.address 的配置项启动。
2.3 配置文件
flink-conf.yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: flink-config
namespace: fat-bigdata-cluster
labels:
app: flink
data:
flink-conf.yaml: |+
jobmanager.rpc.address: flink-jobmanager
taskmanager.numberOfTaskSlots: 50
blob.server.port: 6124
jobmanager.rpc.port: 6123
taskmanager.rpc.port: 6122
jobmanager.heap.size: 1524m
taskmanager.memory.process.size: 4096m
execution.target: kubernetes-session
state.backend: filesystem
state.checkpoints.dir: hdfs://192.168.5.131:25305/flink/cp
state.savepoints.dir: hdfs://192.168.5.131:25305/flink/sp
state.backend.incremental: true
kubernetes.cluster-id: fat-bigdata-cluster-k8s-id
classloader.resolve-order: parent-first
high-availability: org.apache.flink.kubernetes.highavailability.KubernetesHaServicesFactory
high-availability.storageDir: hdfs://192.168.5.131:25305/flink/recovery
#restart-strategy: fixed-delay
#restart-strategy.fixed-delay.attempts: 10
#high-availability.jobmanager.port: 34560
#metrics.internal.query-service.port: 34561
kubernetes.namespace: fat-bigdata-cluster
kubernetes.service-account: flink-bigdata-cluster
log4j.properties: |+
log4j.rootLogger=INFO, file
log4j.logger.akka=INFO
log4j.logger.org.apache.kafka=INFO
log4j.logger.org.apache.hadoop=INFO
log4j.logger.org.apache.zookeeper=INFO
log4j.appender.file=org.apache.log4j.FileAppender
log4j.appender.file.file=${log.file}
log4j.appender.file.layout=org.apache.log4j.PatternLayout
log4j.appender.file.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss,SSS} %-5p %-60c %x - %m%n
log4j.logger.org.apache.flink.shaded.akka.org.jboss.netty.channel.DefaultChannelPipeline=ERROR, file
jobmanager-service.yaml
apiVersion: v1
kind: Service
metadata:
namespace: fat-bigdata-cluster
name: flink-jobmanager
spec:
type: ClusterIP
ports:
- name: rpc
port: 6123
- name: blob
port: 6124
- name: ui
port: 8081
selector:
app: flink
component: jobmanager
jobmanager-rest-service.yaml
apiVersion: v1
kind: Service
metadata:
namespace: dev-flink-plat
name: flink-jobmanager-rest
spec:
type: NodePort
ports:
- name: rest
port: 8081
targetPort: 8081
nodePort: 30081
selector:
app: flink
component: jobmanager
jobmanager-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
namespace: fat-bigdata-cluster
name: flink-jobmanager
spec:
replicas: 1
selector:
matchLabels:
app: flink
component: jobmanager
template:
metadata:
labels:
app: flink
component: jobmanager
spec:
containers:
- name: jobmanager
image: flink:1.13.2
env:
- name: FLINK_PROPERTIES
value: 'jobmanager.rpc.address: flink-jobmanager'
workingDir: /opt/flink
command: ["/bin/bash", "-c", "$FLINK_HOME/bin/jobmanager.sh start;\
while :;
do
if [[ -f $(find log -name '*jobmanager*.log' -print -quit) ]];
then tail -f -n +1 log/*jobmanager*.log;
fi;
done"]
ports:
- containerPort: 6123
name: rpc
- containerPort: 6124
name: blob
- containerPort: 8081
name: ui
livenessProbe:
tcpSocket:
port: 6123
initialDelaySeconds: 30
periodSeconds: 60
volumeMounts:
# - name: flink-config-volume
# mountPath: /opt/flink/conf/
- name: flink-lib-volume
mountPath: /opt/flink/lib/
securityContext:
runAsUser: 9999 # refers to user _flink_ from official flink image, change if necessary
volumes:
# - name: flink-config-volume
# configMap:
# name: flink-config
# items:
# - key: flink-conf.yaml
# path: flink-conf.yaml
# - key: log4j.properties
# path: log4j.properties
- name: flink-lib-volume
hostPath:
path: /home/sll/lib/
type: Directory
taskmanager-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
namespace: fat-bigdata-cluster
name: flink-taskmanager
spec:
replicas: 1
selector:
matchLabels:
app: flink
component: taskmanager
template:
metadata:
labels:
app: flink
component: taskmanager
spec:
containers:
- name: taskmanager
image: flink:1.13.2
workingDir: /opt/flink
command: ["/bin/bash", "-c", "$FLINK_HOME/bin/taskmanager.sh start; \
while :;
do
if [[ -f $(find log -name '*taskmanager*.log' -print -quit) ]];
then tail -f -n +1 log/*taskmanager*.log;
fi;
done"]
ports:
- containerPort: 6122
name: rpc
livenessProbe:
tcpSocket:
port: 6122
initialDelaySeconds: 30
periodSeconds: 60
volumeMounts:
- name: flink-config-volume
mountPath: /opt/flink/conf/
- name: flink-lib-volume
mountPath: /opt/flink/lib/
securityContext:
runAsUser: 9999 # refers to user _flink_ from official flink image, change if necessary
volumes:
- name: flink-config-volume
configMap:
name: flink-config
items:
- key: flink-conf.yaml
path: flink-conf.yaml
- key: log4j.properties
path: log4j.properties
- name: flink-lib-volume
hostPath:
path: /home/sll/lib
type: Directory
serviceaccount.yaml
apiVersion: v1
kind: ServiceAccount
metadata:
name: fat-bigdata-cluster
namespace: fat-bigdata-cluster
automountServiceAccountToken: false
configmaps-cluster-role.yaml
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
namespace: fat-bigdata-cluster
name: configmaps-reader
rules:
- apiGroups: [""]
resources: ["configmaps"]
verbs: ["update","create","get", "watch", "list"]
绑定clusterRole与serviceaccount
k create clusterrolebinding flink-reader-binding --clusterrole=configmaps-reader --serviceaccount=fat-bigdata-cluster:default
更多推荐
所有评论(0)