Pytorch特征图heat map热力图可视化
网络热力图
·
import cv2
import time
import os
import matplotlib.pyplot as plt
import torch
from torch import nn
import torchvision.models as models
import torchvision.transforms as transforms
import numpy as np
savepath = r'features_whitegirl'
if not os.path.exists(savepath):
os.mkdir(savepath)
def draw_features(width, height, x, savename):
tic = time.time()
fig = plt.figure(figsize=(16, 16))
fig.subplots_adjust(left=0.05, right=0.95, bottom=0.05, top=0.95, wspace=0.05, hspace=0.05)
for i in range(width * height):
plt.subplot(height, width, i + 1)
plt.axis('off')
img = x[0, i, :, :]
pmin = np.min(img)
pmax = np.max(img)
img = ((img - pmin) / (pmax - pmin + 0.000001)) * 255 # float在[0,1]之间,转换成0-255
img = img.astype(np.uint8) # 转成unit8
img = cv2.applyColorMap(img, cv2.COLORMAP_JET) # 生成heat map
img = img[:, :, ::-1] # 注意cv2(BGR)和matplotlib(RGB)通道是相反的
plt.imshow(img)
print("{}/{}".format(i, width * height))
fig.savefig(savename, dpi=100)
fig.clf()
plt.close()
print("time:{}".format(time.time() - tic))
class ft_net(nn.Module):
def __init__(self):
super(ft_net, self).__init__()
model_ft = models.resnet50(pretrained=True)
self.model = model_ft
def forward(self, x):
if True: # draw features or not
x = self.model.conv1(x)
print("x:",x.shape)
draw_features(8, 8, x.cpu().numpy(), "{}/f1_conv1.png".format(savepath))
x = self.model.bn1(x)
draw_features(8, 8, x.cpu().numpy(), "{}/f2_bn1.png".format(savepath))
x = self.model.relu(x)
draw_features(8, 8, x.cpu().numpy(), "{}/f3_relu.png".format(savepath))
x = self.model.maxpool(x)
draw_features(8, 8, x.cpu().numpy(), "{}/f4_maxpool.png".format(savepath))
x = self.model.layer1(x)
draw_features(16, 16, x.cpu().numpy(), "{}/f5_layer1.png".format(savepath))
x = self.model.layer2(x)
draw_features(16, 32, x.cpu().numpy(), "{}/f6_layer2.png".format(savepath))
x = self.model.layer3(x)
draw_features(32, 32, x.cpu().numpy(), "{}/f7_layer3.png".format(savepath))
x = self.model.layer4(x)
draw_features(32, 32, x.cpu().numpy()[:, 0:1024, :, :], "{}/f8_layer4_1.png".format(savepath))
draw_features(32, 32, x.cpu().numpy()[:, 1024:2048, :, :], "{}/f8_layer4_2.png".format(savepath))
x = self.model.avgpool(x)
plt.plot(np.linspace(1, 2048, 2048), x.cpu().numpy()[0, :, 0, 0])
plt.savefig("{}/f9_avgpool.png".format(savepath))
plt.clf()
plt.close()
x = x.view(x.size(0), -1)
x = self.model.fc(x)
plt.plot(np.linspace(1, 1000, 1000), x.cpu().numpy()[0, :])
plt.savefig("{}/f10_fc.png".format(savepath))
plt.clf()
plt.close()
else:
x = self.model.conv1(x)
x = self.model.bn1(x)
x = self.model.relu(x)
x = self.model.maxpool(x)
x = self.model.layer1(x)
x = self.model.layer2(x)
x = self.model.layer3(x)
x = self.model.layer4(x)
x = self.model.avgpool(x)
x = x.view(x.size(0), -1)
x = self.model.fc(x)
return x
model = ft_net().cuda()
# pretrained_dict = resnet50.state_dict()
# pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# model_dict.update(pretrained_dict)
# net.load_state_dict(model_dict)
model.eval()
img = cv2.imread('1.png')
img = cv2.resize(img, (224, 224))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
img = transform(img).cuda()
img = img.unsqueeze(0)
with torch.no_grad():
start = time.time()
out = model(img)
print("total time:{}".format(time.time() - start))
result = out.cpu().numpy()
# ind=np.argmax(out.cpu().numpy())
ind = np.argsort(result, axis=1)
for i in range(5):
print("predict:top {} = cls {} : score {}".format(i + 1, ind[0, 1000 - i - 1], result[0, 1000 - i - 1]))
print("done")
效果图:
input image [1,3,224,224]
conv1 [1,64,112,112]
bn1_relu [1,64,112,112]
maxpool [1,64,56,56]
layer1 [1,256,56,56]
layer2 [1,512,28,28]
layer3 [1,1024,14,14]
layer4 [1,2048,7,7]
avgpool [1,2048]
fc [1,1000]
其中:横轴是类别编号,纵轴是输出的类别得分(没有经过softmax)
转 自 :https://blog.csdn.net/weixin_40500230/article/details/93845890``
更多推荐
已为社区贡献4条内容
所有评论(0)