1. pandarallel (pip install )

对于一个带有Pandas DataFrame df的简单用例和一个应用func的函数,只需用parallel_apply替换经典的apply。

from pandarallel import pandarallel

# Initialization
pandarallel.initialize()

# Standard pandas apply
df.apply(func)

# Parallel apply
df.parallel_apply(func)

注意,如果不想并行化计算,仍然可以使用经典的apply方法。

另外可以通过在initialize函数中传递progress_bar=True来显示每个工作CPU的一个进度条。

 

2. joblib (pip install )

 https://pypi.python.org/pypi/joblib

# Embarrassingly parallel helper: to make it easy to write readable parallel code and debug it quickly

from math import sqrt
from joblib import Parallel, delayed

def test():
    start = time.time()
    result1 = Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10000))
    end = time.time()
    print(end-start)
    result2 = Parallel(n_jobs=8)(delayed(sqrt)(i**2) for i in range(10000))
    end2 = time.time()
    print(end2-end)

-------输出结果----------

0.4434356689453125
0.6346755027770996

 

3. multiprocessing

import multiprocessing as mp

with mp.Pool(mp.cpu_count()) as pool:
    df['newcol'] = pool.map(f, df['col'])

multiprocessing.cpu_count()

返回系统的CPU数量。

该数量不同于当前进程可以使用的CPU数量。可用的CPU数量可以由 len(os.sched_getaffinity(0)) 方法获得。

可能引发 NotImplementedError 。

参见 os.cpu_count()

 

4. 几种方法性能比较

(1)代码

import sys
import time
import pandas as pd
import multiprocessing as mp
from joblib import Parallel, delayed
from pandarallel import pandarallel
from tqdm import tqdm, tqdm_notebook


def get_url_len(url):
    url_list = url.split(".")
    time.sleep(0.01) # 休眠0.01秒
    return len(url_list)

def test1(data):
    """
    不进行任何优化
    """
    start = time.time()
    data['len'] = data['url'].apply(get_url_len)
    end = time.time()
    cost_time = end - start
    res = sum(data['len'])
    print("res:{}, cost time:{}".format(res, cost_time))

def test_mp(data):
    """
    采用mp优化
    """
    start = time.time()
    with mp.Pool(mp.cpu_count()) as pool:
        data['len'] = pool.map(get_url_len, data['url'])
    end = time.time()
    cost_time = end - start
    res = sum(data['len'])
    print("test_mp \t res:{}, cost time:{}".format(res, cost_time))

def test_pandarallel(data):
    """
    采用pandarallel优化
    """
    start = time.time()
    pandarallel.initialize()
    data['len'] = data['url'].parallel_apply(get_url_len)
    end = time.time()
    cost_time = end - start
    res = sum(data['len'])
    print("test_pandarallel \t res:{}, cost time:{}".format(res, cost_time))


def test_delayed(data):
    """
    采用delayed优化
    """
    def key_func(subset):
        subset["len"] = subset["url"].apply(get_url_len)
        return subset

    start = time.time()
    data_grouped = data.groupby(data.index)
    # data_grouped 是一个可迭代的对象,那么就可以使用 tqdm 来可视化进度条
    results = Parallel(n_jobs=8)(delayed(key_func)(group) for name, group in tqdm(data_grouped))
    data = pd.concat(results)
    end = time.time()
    cost_time = end - start
    res = sum(data['len'])
    print("test_delayed \t res:{}, cost time:{}".format(res, cost_time))


if __name__ == '__main__':
    
    columns = ['title', 'url', 'pub_old', 'pub_new']
    temp = pd.read_csv("./input.csv", names=columns, nrows=10000)
    data = temp
    """
    for i in range(99):
        data = data.append(temp)
    """
    print(len(data))
    """
    test1(data)
    test_mp(data)
    test_pandarallel(data)
    """
    test_delayed(data)
   

(2) 结果输出

1k
res:4338, cost time:0.0018074512481689453
test_mp 	 res:4338, cost time:0.2626469135284424
test_pandarallel 	 res:4338, cost time:0.3467681407928467

1w
res:42936, cost time:0.008773326873779297
test_mp 	 res:42936, cost time:0.26111721992492676
test_pandarallel 	 res:42936, cost time:0.33237743377685547

10w
res:426742, cost time:0.07944369316101074
test_mp 	 res:426742, cost time:0.294996976852417
test_pandarallel 	 res:426742, cost time:0.39208269119262695

100w
res:4267420, cost time:0.8074917793273926
test_mp 	 res:4267420, cost time:0.9741342067718506
test_pandarallel 	 res:4267420, cost time:0.6779992580413818

1000w
res:42674200, cost time:8.027287006378174
test_mp 	 res:42674200, cost time:7.751036882400513
test_pandarallel 	 res:42674200, cost time:4.404983282089233

 

在get_url_len函数里加个sleep语句(模拟复杂逻辑),数据量为1k,运行结果如下:

1k
res:4338, cost time:10.054503679275513
test_mp 	 res:4338, cost time:0.35697126388549805
test_pandarallel 	 res:4338, cost time:0.43415403366088867
test_delayed 	 res:4338, cost time:2.294757843017578

 

5. 小结

(1)如果数据量比较少,并行处理比单次执行效率更慢;

(2)如果apply的函数逻辑简单,并行处理比单次执行效率更慢。

 

6. 问题及解决方法

(1)ImportError: This platform lacks a functioning sem_open implementation, therefore, the required synchronization primitives needed will not function, see issue 3770.

https://www.jianshu.com/p/0be1b4b27bde

(2)Linux查看物理CPU个数、核数、逻辑CPU个数

https://lover.blog.csdn.net/article/details/113951192

(3) 进度条的使用

https://blog.csdn.net/qq_33472765/article/details/82940843

Logo

为开发者提供学习成长、分享交流、生态实践、资源工具等服务,帮助开发者快速成长。

更多推荐