dataframe 绘图——按照每列出一个图(df.plot)
主要利用dataframe.plot绘图:对每一列绘制折线图,并在一张图显示。使用DataFrame的plot方法绘制图像会按照数据的每一列绘制一条曲线,默认按照列columns的名称在适当的位置展示图例。DataFrame.plot(x=None, y=None, kind='line', ax=None, subplots=False, sharex=None, sharey=False,
主要利用dataframe.plot绘图:对每一列绘制折线图,并在一张图显示。
使用DataFrame的plot方法绘制图像会按照数据的每一列绘制一条曲线,默认按照列columns的名称在适当的位置展示图例。
DataFrame.plot(x=None, y=None, kind='line', ax=None, subplots=False, sharex=None, sharey=False, layout=None, figsize=None, use_index=True, title=None, grid=None, legend=True, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, position=0.5, table=False, yerr=None, xerr=None, stacked=True/False, sort_columns=False, secondary_y=False, mark_right=True, **kwds)
1.数据重构
原数据格式:
为了后面能够直接利用df.plot按列绘图,需要先对数据进行调整。
一般对数据进行调整的函数有stack;unstack; pivot函数,这里df.pivot()函数可以满足要求。
语法:DataFrame.pivot(index=None, columns=None, values=None)
重塑数据(产生一个“pivot”表格)以列值为标准。使用来自索引/列的唯一的值(去除重复值)为轴形成dataframe结果。为了精细调节控制,可以看和stack/unstack方法有关的分层索引文件。
调整后的数据格式为:
2.pandas.DataFrame.plot( )绘制图像
(1)绘制组合图
fig = plt.figure(figsize=(6,4))
ax= fig.add_subplot(1,1,1)
df.plot(x='Date',kind='line',marker='o',markersize=0.25,linestyle='-',linewidth=0.1 ,legend = False,ax = ax)#color=['r','b','g','limegreen','fuchsia','gold','lightskyblue']
#df.plot(style=['--',':','-.'])
plt.tight_layout()
plt.show()
参考资料:
官网资料pandas-Visualization实例:https://pandas.pydata.org/pandas-docs/version/0.18.1/visualization.html
df.plot:https://blog.csdn.net/u010916338/article/details/105725777
pandas.DataFrame.plot( )参数详解:https://blog.csdn.net/h_hxx/article/details/90635650
更多推荐
所有评论(0)