PyTorch中的.train()与self.training
设置.train(),self.training=True设置.eval(),self.training=Falseclass MyNet(nn.Module):def __init__(self):super(MyNet, self).__init__()self.features = nn.Sequential(nn.Conv2d(1, 32, kernel_size=3, padding=1
·
设置.train(),self.training=True
设置.eval(),self.training=False
class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(1, 32, kernel_size=3, padding=1, bias = False),
nn.BatchNorm2d(32, affine=False),
)
self.classifier = nn.Linear(512, 20, bias=False)
def forward(self, input):
x_features = self.features(input)
x = x_features.view(x_features.size(0), -1)
if self.training is False:
return x
x = self.classifier(x)
return x
m = MyNet()
m.train()
print(m.training)
m.eval()
print(m.training)
True
False
input = torch.randn(1, 1, 4, 4)
m.train()
output = m(input)
print(output.size())
m.eval()
output1 = m(input)
print(output1.size())
torch.Size([1, 20])
torch.Size([1, 512])
更多推荐
已为社区贡献1条内容
所有评论(0)