参考笔记
https://github.com/PariseC/Algorithms_for_solving_VRP

1. 适用场景

  • 求解CVRP
  • 车辆类型单一
  • 车辆容量不小于需求节点最大需求
  • 单一车辆基地

2. 问题分析

CVRP问题的解为一组满足需求节点需求的多个车辆的路径集合。假设某物理网络中共有10个顾客节点,编号为1~10,一个车辆基地,编号为0,在满足车辆容量约束与顾客节点需求约束的条件下,此问题的一个可行解可表示为:[0-1-2-0,0-3-4-5-0,0-6-7-8-0,0-9-10-0],即需要4个车辆来提供服务,车辆的行驶路线分别为0-1-2-0,0-3-4-5-0,0-6-7-8-0,0-9-10-0。由于车辆的容量固定,基地固定,因此可以将上述问题的解先表示为[1-2-3-4-5-6-7-8-9-10]的有序序列,然后根据车辆的容量约束,对序列进行切割得到若干车辆的行驶路线。因此可以将CVRP问题转换为TSP问题进行求解,得到TSP问题的优化解后再考虑车辆容量约束进行路径切割,得到CVRP问题的解。这样的处理方式可能会影响CVRP问题解的质量,但简化了问题的求解难度。

3. 数据格式

以xlsx文件储存网络数据,其中第一行为标题栏,第二行存放车辆基地数据。在程序中车辆基地seq_no编号为-1,需求节点seq_id从0开始编号。可参考github主页相关文件。
在这里插入图片描述

4. 分步实现

(1)数据结构

定义Sol()类,Node()类,Model()类,其属性如下表:

  • Sol()类,表示一个可行解
属性描述
nodes_seq需求节点seq_no有序排列集合,对应TSP的解
obj优化目标值
fit解的适应度
routes车辆路径集合,对应CVRP的解
  • Node()类,表示一个网络节点
属性描述
id物理节点id,可选
name物理节点名称,可选
seq_no物理节点映射id,基地节点为-1,需求节点从0编号
x_coord物理节点x坐标
y_coord物理节点y坐标
demand物理节点需求
  • Model()类,存储算法参数
属性描述
best_sol全局最优解,值类型为Sol()
node_list物理节点集合,值类型为Node()
sol_list种群,值类型为Sol()
node_seq_no_list物理节点映射id集合
depot车辆基地,值类型为Node()
number_of_nodes需求节点数量
opt_type优化目标类型,0:最小车辆数,1:最小行驶距离
vehicle_cap车辆容量
pc交叉概率
pm突变概率
n_select优良个体选择数量
popsize种群规模

(2)文件读取

def readXlsxFile(filepath,model):
    #It is recommended that the vehicle depot data be placed in the first line of xlsx file
    node_seq_no =-1 #the depot node seq_no is -1,and demand node seq_no is 0,1,2,...
    df = pd.read_excel(filepath)
    for i in range(df.shape[0]):
        node=Node()
        node.id=node_seq_no
        node.seq_no=node_seq_no
        node.x_coord= df['x_coord'][i]
        node.y_coord= df['y_coord'][i]
        node.demand=df['demand'][i]
        if df['demand'][i] == 0:
            model.depot=node
        else:
            model.node_list.append(node)
            model.node_seq_no_list.append(node_seq_no)
        try:
            node.name=df['name'][i]
        except:
            pass
        try:
            node.id=df['id'][i]
        except:
            pass
        node_seq_no=node_seq_no+1
    model.number_of_nodes=len(model.node_list)

(3)初始解生成

def genInitialSol(model):
    nodes_seq=copy.deepcopy(model.node_seq_no_list)
    for i in range(model.popsize):
        seed=int(random.randint(0,10))
        random.seed(seed)
        random.shuffle(nodes_seq)
        sol=Sol()
        sol.nodes_seq=copy.deepcopy(nodes_seq)
        model.sol_list.append(sol)

(4)适应度计算
适应度计算依赖" splitRoutes “函数对TSP可行解分割得到车辆行驶路线和所需车辆数,” calDistance "函数计算行驶距离。

def splitRoutes(nodes_seq,model):
    num_vehicle = 0
    vehicle_routes = []
    route = []
    remained_cap = model.vehicle_cap
    for node_no in nodes_seq:
        if remained_cap - model.node_list[node_no].demand >= 0:
            route.append(node_no)
            remained_cap = remained_cap - model.node_list[node_no].demand
        else:
            vehicle_routes.append(route)
            route = [node_no]
            num_vehicle = num_vehicle + 1
            remained_cap =model.vehicle_cap - model.node_list[node_no].demand
    vehicle_routes.append(route)
    return num_vehicle,vehicle_routes
def calDistance(route,model):
    distance=0
    depot=model.depot
    for i in range(len(route)-1):
        from_node=model.node_list[route[i]]
        to_node=model.node_list[route[i+1]]
        distance+=math.sqrt((from_node.x_coord-to_node.x_coord)**2+(from_node.y_coord-to_node.y_coord)**2)
    first_node=model.node_list[route[0]]
    last_node=model.node_list[route[-1]]
    distance+=math.sqrt((depot.x_coord-first_node.x_coord)**2+(depot.y_coord-first_node.y_coord)**2)
    distance+=math.sqrt((depot.x_coord-last_node.x_coord)**2+(depot.y_coord - last_node.y_coord)**2)
    return distance
def calFit(model):
    #calculate fit value:fit=Objmax-obj
    Objmax=-float('inf')
    best_sol=Sol()#record the local best solution
    best_sol.obj=float('inf')
    #计算目标函数
    for sol in model.sol_list:
        nodes_seq=sol.nodes_seq
        num_vehicle, vehicle_routes = splitRoutes(nodes_seq, model)
        if model.opt_type==0:
            sol.obj=num_vehicle
            sol.routes=vehicle_routes
            if sol.obj>Objmax:
                Objmax=sol.obj
            if sol.obj<best_sol.obj:
                best_sol=copy.deepcopy(sol)
        else:
            distance=0
            for route in vehicle_routes:
                distance+=calDistance(route,model)
            sol.obj=distance
            sol.routes=vehicle_routes
            if sol.obj>Objmax:
                Objmax=sol.obj
            if sol.obj < best_sol.obj:
                best_sol = copy.deepcopy(sol)
    #calculate fit value
    for sol in model.sol_list:
        sol.fit=Objmax-sol.obj
    #update the global best solution
    if best_sol.obj<model.best_sol.obj:
        model.best_sol=best_sol

(5)优良个体选择

采用二元锦标赛法进行优良个体选择。

遗传算法中的锦标赛选择策略每次从种群中取出一定数量个体(放回抽样),然后选择其中最好的一个进入子代种群。重复该操作,直到新的种群规模达到原来的种群规模。几元锦标赛就是一次性在总体中取出几个个体,然后在这些个体中取出最优的个体放入保留到下一代种群的集合中。具体的操作步骤如下:

1、确定每次选择的个体数量N。(二元锦标赛选择即选择2个个体)
2、从种群中随机选择N个个体(每个个体被选择的概率相同) ,根据每个个体的适应度值,选择
其中适应度值最好的个体进入下一代种群。
3、 重复步骤(2)多次(重复次数为种群的大小),直到新的种群规模达到原来的种群规模。

锦标赛选择法(遗传算法)

def selectSol(model):
    sol_list=copy.deepcopy(model.sol_list)
    model.sol_list=[]
    for i in range(model.n_select):
        f1_index=random.randint(0,len(sol_list)-1)
        f2_index=random.randint(0,len(sol_list)-1)
        f1_fit=sol_list[f1_index].fit
        f2_fit=sol_list[f2_index].fit
        if f1_fit<f2_fit:
            model.sol_list.append(sol_list[f2_index])
        else:
            model.sol_list.append(sol_list[f1_index])

(6)交叉

采用OX交叉法。

Order Crossover (OX)
过程:
遗传算法中几种交叉算子小结

两个父代:Par1 和Par2

  1. 随机选择一对染色体(父代)中几个基因的起止位置(两染色体被选位置相同)
  2. 生成一个子代,并保证子代中被选中的基因的位置与父代相同
  3. 先找出第一步选中的基因在另一个父代中的位置,再将其余基因按顺序放入上一步生成的子代中:
    在这里插入图片描述
    需要注意的是,这种算法同样会生成两个子代,另一个子代生成过程完全相同在这里插入图片描述
    产生两个子代:Child1和Child2
# Order Crossover (OX)
def crossSol(model):
    sol_list=copy.deepcopy(model.sol_list)
    model.sol_list=[]
    while True:
        f1_index = random.randint(0, len(sol_list) - 1)
        f2_index = random.randint(0, len(sol_list) - 1)
        if f1_index!=f2_index:
            f1 = copy.deepcopy(sol_list[f1_index])
            f2 = copy.deepcopy(sol_list[f2_index])
            if random.random() <= model.pc:
                cro1_index=int(random.randint(0,model.number_of_nodes-1))
                cro2_index=int(random.randint(cro1_index,model.number_of_nodes-1))
                new_c1_f = []
                new_c1_m=f1.nodes_seq[cro1_index:cro2_index+1]
                new_c1_b = []
                new_c2_f = []
                new_c2_m=f2.nodes_seq[cro1_index:cro2_index+1]
                new_c2_b = []
                for index in range(model.number_of_nodes):
                    if len(new_c1_f)<cro1_index:
                        if f2.nodes_seq[index] not in new_c1_m:
                            new_c1_f.append(f2.nodes_seq[index])
                    else:
                        if f2.nodes_seq[index] not in new_c1_m:
                            new_c1_b.append(f2.nodes_seq[index])
                for index in range(model.number_of_nodes):
                    if len(new_c2_f)<cro1_index:
                        if f1.nodes_seq[index] not in new_c2_m:
                            new_c2_f.append(f1.nodes_seq[index])
                    else:
                        if f1.nodes_seq[index] not in new_c2_m:
                            new_c2_b.append(f1.nodes_seq[index])
                new_c1=copy.deepcopy(new_c1_f)
                new_c1.extend(new_c1_m)
                new_c1.extend(new_c1_b)
                f1.nodes_seq=new_c1
                new_c2=copy.deepcopy(new_c2_f)
                new_c2.extend(new_c2_m)
                new_c2.extend(new_c2_b)
                f2.nodes_seq=new_c2
                model.sol_list.append(copy.deepcopy(f1))
                model.sol_list.append(copy.deepcopy(f2))
            else:
                model.sol_list.append(copy.deepcopy(f1))
                model.sol_list.append(copy.deepcopy(f2))
            if len(model.sol_list)>model.popsize:
                break

(7)突变

采用二元突变。

def muSol(model):
    sol_list=copy.deepcopy(model.sol_list)
    model.sol_list=[]
    while True:
        f1_index = int(random.randint(0, len(sol_list) - 1))
        f1 = copy.deepcopy(sol_list[f1_index])
        m1_index=random.randint(0,model.number_of_nodes-1)
        m2_index=random.randint(0,model.number_of_nodes-1)
        if m1_index!=m2_index:
            if random.random() <= model.pm:
                node1=f1.nodes_seq[m1_index]
                f1.nodes_seq[m1_index]=f1.nodes_seq[m2_index]
                f1.nodes_seq[m2_index]=node1
                model.sol_list.append(copy.deepcopy(f1))
            else:
                model.sol_list.append(copy.deepcopy(f1))
            if len(model.sol_list)>model.popsize:
                break

(8)绘制收敛曲线

def plotObj(obj_list):
    plt.rcParams['font.sans-serif'] = ['SimHei'] #show chinese
    plt.rcParams['axes.unicode_minus'] = False  # Show minus sign
    plt.plot(np.arange(1,len(obj_list)+1),obj_list)
    plt.xlabel('Iterations')
    plt.ylabel('Obj Value')
    plt.grid()
    plt.xlim(1,len(obj_list)+1)
    plt.show()

(9)输出结果

def outPut(model):
    work=xlsxwriter.Workbook('result.xlsx')
    worksheet=work.add_worksheet()
    worksheet.write(0,0,'opt_type')
    worksheet.write(1,0,'obj')
    if model.opt_type==0:
        worksheet.write(0,1,'number of vehicles')
    else:
        worksheet.write(0, 1, 'drive distance of vehicles')
    worksheet.write(1,1,model.best_sol.obj)
    for row,route in enumerate(model.best_sol.routes):
        worksheet.write(row+2,0,'v'+str(row+1))
        r=[str(i)for i in route]
        worksheet.write(row+2,1, '-'.join(r))
    work.close()

Logo

为开发者提供学习成长、分享交流、生态实践、资源工具等服务,帮助开发者快速成长。

更多推荐