偏度(skewness)

是统计数据分布偏斜方向和程度的度量,是统计数据分布非对称程度的数值特征:定义为:样本的三阶标准化矩。
Skew(X)=E[(X−μσ)]=k3σ3=k3k23/2Skew(X)=E[(\frac{X-\mu}{\sigma})]=\frac{k_3}{\sigma_3}=\frac{k_3}{k_2^{3/2}}Skew(X)=E[(σXμ)]=σ3k3=k23/2k3

偏度定义中包括:正态分布(偏度=0)、右偏(尾巴右偏)分布(也叫正偏分布,偏度>0),左偏(尾巴左偏)分布(也叫负偏分布,其偏度<0)。

峰度(peakedness、kurtosis)

又称峰态系数。表征概率密度分布曲线在平均值处峰值高低的特征数,直观看来,峰度反映了峰部的尖度,随机变量的峰度计算方法:随机变量的四阶中心距与方差平方的比值。

Kurt(X)=E[(X−μσ)4]=E[(X−μ)4]E[(X−μ)2])2Kurt(X)=E[(\frac{X-\mu}{\sigma})^4]=\frac{E[(X-\mu)^4]}{E[(X-\mu)^2])^2}Kurt(X)=E[(σXμ)4]=E[(Xμ)2])2E[(Xμ)4]

峰度包括正态分布(峰度值=3),厚尾(峰度值>3),瘦尾(峰度值<3)
在这里插入图片描述

具体计算方法:
DataFrame.skew()
DtaFrame.kurt()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Logo

华为开发者空间,是为全球开发者打造的专属开发空间,汇聚了华为优质开发资源及工具,致力于让每一位开发者拥有一台云主机,基于华为根生态开发、创新。

更多推荐