目标检测 YOLOv5 - 损失函数的改进
目标检测 YOLOv5 - 损失函数的改进flyfish完整代码下载地址该改进源码完全兼容原版的YOLOv5:v5版本,同时backbone支持mobilenetv3,shufflenetv2,原有的backbone全部支持等等类别有包含关系的例如一个目标可以是人,男人,也有互斥关系的,一个类别例如人,猫,狗。在数据集的类别是互斥关系下尝试损失函数的改进类别是包含关系的BCEWithLogitsL
目标检测 YOLOv5 - 损失函数的改进
flyfish
完整代码下载地址
该改进源码完全兼容原版的YOLOv5:v5版本,同时backbone支持mobilenetv3,shufflenetv2,原有的backbone全部支持等等
类别有包含关系的例如一个目标可以是人,男人,也有互斥关系的,一个类别例如人,猫,狗。在数据集的类别是互斥关系下尝试损失函数的改进
类别是包含关系的
BCEWithLogitsLoss 可以用于多标签分类的,一个目标可以属于一个或者多个类别,例如一个目标可以是人,男人,儿童,类别存在一种包括关系。
因为BCEWithLogitsLoss = Sigmoid + BCELoss,BCEWithLogitsLoss将Sigmoid加入了损失函数中。Sigmoid概率和不需要是1。
例如sigmoid的计算结果取出一行看示例代码中的输出[0.5100, 0.6713, 0.5025]这个数累加起来不是1,如果定义阈值大于等于0.50。那么这个目标同时属于三个类,结果如果要求只属于一个类,可以取最大的那个。
类别是互斥关系的
如果检测的类别,类别是互斥关系,例如人,猫,狗这种互斥关系,如何改造呢?
CrossEntropyLoss = LogSoftmax + NLLLoss
Softmax概率和是1或者说接近1。Softmax 大值比其他值具有更大的概率。Sigmoid数值大则概率大,但概率不会比另一个数值的概率更大。
看示例代码中的输出[0.2543, 0.4990, 0.2467]这三个数加起来和是1。
Sigmoid和Softmax 示例代码
import torch
import torch.nn as nn
input = torch.Tensor([[0.0402, 0.7142,0.01],
[0.2214, 0.4781,0.01]])
net1 = nn.Sigmoid()
output1 = net1(input)
print(output1)
# tensor([[0.5100, 0.6713, 0.5025],
# [0.5551, 0.6173, 0.5025]])
net2 = nn.Softmax(dim=-1)
output2 = net2(input)
print(output2)
# tensor([[0.2543, 0.4990, 0.2467],
# [0.3224, 0.4167, 0.2609]])
Softmax是互斥关系,那么是尝试使用交叉熵损失改造下看看。
更改代码如下或者直接到这里YOLOv5-ShuffleNetV2-CrossEntropyLoss下载全部代码
训练阶段
utils/loss.py
class ComputeLoss:
# Compute losses
def __init__(self, model, autobalance=False):
super(ComputeLoss, self).__init__()
device = next(model.parameters()).device # get model device
h = model.hyp # hyperparameters
# Define criteria
#changed by Sisyphus
BCEcls = nn.CrossEntropyLoss()
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
print("self.cp, self.cn:",self.cp,":", self.cn)
# Focal loss
g = h['fl_gamma'] # focal loss gamma
if g > 0:
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7
self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
for k in 'na', 'nc', 'nl', 'anchors':
setattr(self, k, getattr(det, k))
def __call__(self, p, targets): # predictions, targets, model
device = targets.device
lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
tcls, tbox, indices, anchors = self.build_targets(p, targets) # targets
# Losses
for i, pi in enumerate(p): # layer index, layer predictions
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
print("indices[i] :",indices[i].shape )
tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
n = b.shape[0] # number of targets
if n:
ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
# Regression
pxy = ps[:, :2].sigmoid() * 2. - 0.5
pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
pbox = torch.cat((pxy, pwh), 1) # predicted box
iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target)
lbox += (1.0 - iou).mean() # iou loss
# Objectness
tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
# Classification
if self.nc > 1: # cls loss (only if multiple classes)
t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets
t[range(n), tcls[i]] = self.cp
#lcls += self.BCEcls(ps[:, 5:], t) # BCE
#changed by Sisyphus 20210914
lcls += self.BCEcls(ps[:, 5:], tcls[i].clone().detach())
# Append targets to text file
# with open('targets.txt', 'a') as file:
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
obji = self.BCEobj(pi[..., 4], tobj)
lobj += obji * self.balance[i] # obj loss
if self.autobalance:
self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
if self.autobalance:
self.balance = [x / self.balance[self.ssi] for x in self.balance]
lbox *= self.hyp['box']
lobj *= self.hyp['obj']
lcls *= self.hyp['cls']
bs = tobj.shape[0] # batch size
loss = lbox + lobj + lcls
return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
推理阶段
models/yolo.py
class Detect(nn.Module):
stride = None # strides computed during build
export = False # onnx export
def __init__(self, nc=80, anchors=(), ch=()): # detection layer
super(Detect, self).__init__()
self.nc = nc # number of classes
self.no = nc + 5 # number of outputs per anchor
self.nl = len(anchors) # number of detection layers
self.na = len(anchors[0]) // 2 # number of anchors
self.grid = [torch.zeros(1)] * self.nl # init grid
a = torch.tensor(anchors).float().view(self.nl, -1, 2)
self.register_buffer('anchors', a) # shape(nl,na,2)
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
def forward(self, x):
# x = x.copy() # for profiling
z = [] # inference output
self.training |= self.export
for i in range(self.nl):
x[i] = self.m[i](x[i]) # conv
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
if not self.training: # inference
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
y = x[i].sigmoid()
tmp = x[i][...,5:]# add by Sisyphus
tmp = tmp.softmax(dim=-1)
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
y[...,5:] = tmp
z.append(y.view(bs, -1, self.no))
return x if self.training else (torch.cat(z, 1), x)
@staticmethod
def _make_grid(nx=20, ny=20):
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
可以换上自己的数据集尝试一下
阅读此文章的人还阅读了以下内容
目标检测 YOLOv5 - 早停机制(Early Stopping)
目标检测 YOLOv5 - 卷积层和BN层的融合
目标检测 YOLOv5 - Sample Assignment
目标检测 YOLOv5 - 数据增强
目标检测 YOLOv5 - 学习率
目标检测 YOLOv5 - 多机多卡训练
目标检测 YOLOv5 - 浮点取模
目标检测 YOLOv5 - 在多类别中应用NMS(非极大值抑制)
目标检测 YOLOv5 - loss for objectness and classification
目标检测 YOLOv5 - loss for bounding box regression
目标检测 YOLOv5 - 指标计算
目标检测 YOLOv5 - anchor设置
目标检测 YOLOv5 - SPP模块
目标检测 YOLOv5 - 边框预测(bounding box prediction)
目标检测 YOLOv5 - 自定义网络结构(YOLOv5-ShuffleNetV2)
目标检测 YOLOv5 - 常见的边框(bounding box )坐标表示方法
目标检测 YOLOv5 - 图像大小与loss权重的关系
目标检测 YOLOv5 - 根据配置改变网络的深度和宽度
目标检测 YOLOv5 - 转ncnn移动端部署
目标检测 YOLOv5 - Backbone中的Focus
目标检测 YOLOv5 - 模型训练、推理、导出命令
目标检测 YOLOv5 - 人脸数据集widerface转YOLOv5格式
目标检测 YOLOv5 - 使用的数据集格式
目标检测 YOLOv5 - 中使用COCO数据集
目标检测 YOLOv5 - CrowdHuman数据集格式转YOLOv5格式
更多推荐
所有评论(0)