按列取、按索引/行取、按特定行列取

import numpy as np
from pandas import DataFrame
import pandas as pd

df=DataFrame(np.arange(12).reshape((3,4)),index=['one','two','thr'],columns=list('abcd'))
 
df['a']#取a列
df[['a','b']]#取a、b列
 
#ix可以用数字索引,也可以用index和column索引
df.ix[0]#取第0行
df.ix[0:1]#取第0行
df.ix['one':'two']#取one、two行
df.ix[0:2,0]#取第0、1行,第0列
df.ix[0:1,'a']#取第0行,a列
df.ix[0:2,'a':'c']#取第0、1行,abc列
df.ix['one':'two','a':'c']#取one、two行,abc列
df.ix[0:2,0:1]#取第0、1行,第0列
df.ix[0:2,0:2]#取第0、1行,第0、1列
 
#loc只能通过index和columns来取,不能用数字
df.loc['one','a']#one行,a列
df.loc['one':'two','a']#one到two行,a列
df.loc['one':'two','a':'c']#one到two行,a到c列
df.loc['one':'two',['a','c']]#one到two行,ac列
 
#iloc只能用数字索引,不能用索引名
df.iloc[0:2]#前2行
df.iloc[0]#第0行
df.iloc[0:2,0:2]#0、1行,0、1列
df.iloc[[0,2],[1,2,3]]#第0、2行,1、2、3列
 
#iat取某个单值,只能数字索引
df.iat[1,1]#第1行,1列
#at取某个单值,只能index和columns索引
df.at['one','a']#one行,a列

按条件取行

选取等于某些值的行记录 用 ==
df.loc[df[‘column_name’] == some_value]
 
选取某列是否是某一类型的数值 用 isin
df.loc[df[‘column_name’].isin(some_values)]
 
多种条件的选取 用 &
df.loc[(df[‘column’] == some_value) & df[‘other_column’].isin(some_values)]
 
选取不等于某些值的行记录 用 !=
df.loc[df[‘column_name’] != some_value]
 
isin返回一系列的数值,如果要选择不符合这个条件的数值使用~
df.loc[~df[‘column_name’].isin(some_values)]

删除特定行

# 要删除列“score”<50的所有行:
df = df.drop(df[df.score < 50].index)
 
df.drop(df[df.score < 50].index, inplace=True)
 
# 多条件情况
# 可以使用操作符: | 只需其中一个成立, & 同时成立, ~ 表示取反,它们要用括号括起来。
# 例如删除列“score<50 和>20的所有行
df = df.drop(df[(df.score < 50) & (df.score > 20)].index)
Logo

华为开发者空间,是为全球开发者打造的专属开发空间,汇聚了华为优质开发资源及工具,致力于让每一位开发者拥有一台云主机,基于华为根生态开发、创新。

更多推荐