归一化:用于减少不同字段数量级差异造成的影响,或用来平滑数值,可用在x,y

反归一化:一般用来模型预测后的pred y,反归一化回原来的数量级

纯公式推导版本:

归一化

data = [1,2,3,4]
def MaxMinNormalization(x,Max,Min):
	x = (x - Min) / (Max - Min)
	return x

import numpy as np
Max = np.max(data)
Min = np.min(data)
data = MaxMinNormalization(data,Max,Min)
print(data)

[0.         0.33333333 0.66666667 1.        ]

反归一化

正在研究···


调用Skelearn包实现归一化与反归一化

数据预处理_数据反归一化01_bhcgdh的博客-CSDN博客_反归一化

归一化时使用 scaler 进行归一化,反归一化仍然要使用 scaler 数据转换

Tips:如果归一化时的 values 的shape是(n, 3),则反归一化时的 data 的shape必须是(m, 3)

参考资料

(174条消息) 数据预处理_数据反归一化01_bhcgdh的博客-CSDN博客_反归一化 

数据归一化 - 知乎 (zhihu.com)

(170条消息) sklearn MinMaxScaler对某一个特征反归一化_Azia的博客-CSDN博客_sklearn反归一化

(170条消息) 数据处理中的归一化与反归一化_路_遥的博客-CSDN博客_数据归一化和反归一化 

Logo

华为开发者空间,是为全球开发者打造的专属开发空间,汇聚了华为优质开发资源及工具,致力于让每一位开发者拥有一台云主机,基于华为根生态开发、创新。

更多推荐