【图神经网络之神器】torch_geometric
GCN/GraphSAGE/GAT代码导包import torchimport torch.nn.functional as Ffrom torch_geometric.nn import GCNConv, SAGEConv, GATConvfrom torch_geometric.datasets import Planetoid导入数据集dataset = Planetoid(root='./
·
GCN/GraphSAGE/GAT代码
-
导包
import torch import torch.nn.functional as F from torch_geometric.nn import GCNConv, SAGEConv, GATConv from torch_geometric.datasets import Planetoid
-
导入数据集
dataset = Planetoid(root='./tmp/Cora', name='Cora') print(dataset.num_node_features) # 节点的特征数 1433 print(dataset.num_classes) # 节点的类别数 7 data = dataset[0] print(data.y) # 节点对应的类别 print(data.x) # 节点特征矩阵 [2708, 1433] print(data.edge_index) # 图的边关系 [2, 10556] print(data.train_mask) # 为true的位置,代表是训练集 140 print(data.val_mask) # 为true的位置,代表是验证集 500 print(data.test_mask) # 为true的位置,代表是测试集 1000
1. GCN模型
-
构建
class GCN_Net(torch.nn.Module): def __init__(self, features, hidden, classes): super(GCN_Net, self).__init__() self.conv1 = GCNConv(features, hidden) self.conv2 = GCNConv(hidden, classes) def forward(self, data): x, edge_index = data.x, data.edge_index x = self.conv1(x, edge_index) x = F.relu(x) x = F.dropout(x, training=self.training) x = self.conv2(x, edge_index) return F.log_softmax(x, dim=1)
-
训练和测试
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = GCN_Net(dataset.num_node_features, 16, dataset.num_classes).to(device) data = dataset[0].to(device) optimizer = torch.optim.Adam(model.parameters(), lr=0.01) model.train() for epoch in range(200): optimizer.zero_grad() out = model(data) loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask]) loss.backward() optimizer.step() model.eval() _, pred = model(data).max(dim=1) correct = pred[data.test_mask].eq(data.y[data.test_mask]).sum() acc = int(correct) / int(data.test_mask.sum()) print('GCN:', acc)
2. GraphSAGE模型
-
构建
class GraphSAGE_Net(torch.nn.Module): def __init__(self, features, hidden, classes): super(GraphSAGE_Net, self).__init__() self.sage1 = SAGEConv(features, hidden) self.sage2 = SAGEConv(hidden, classes) def forward(self, data): x, edge_index = data.x, data.edge_index x = self.sage1(x, edge_index) x = F.relu(x) x = F.dropout(x, training=self.training) x = self.sage2(x, edge_index) return F.log_softmax(x, dim=1)
-
训练和测试
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = GraphSAGE_Ne.to(device)t(dataset.num_node_features, 16, dataset.num_classes).to(device) data = dataset[0].to(device) optimizer = torch.optim.Adam(model.parameters(), lr=0.01) model.train() for epoch in range(200): optimizer.zero_grad() out = model(data) loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask]) loss.backward() optimizer.step() model.eval() _, pred = model(data).max(dim=1) correct = pred[data.test_mask].eq(data.y[data.test_mask]).sum() acc = int(correct) / int(data.test_mask.sum()) print('GraphSAGE', acc)
3. GAT模型
-
构建
class GAT_Net(torch.nn.Module): def __init__(self, features, hidden, classes, heads=1): super(GAT_Net, self).__init__() self.gat1 = GATConv(features, hidden, heads=heads) self.gat2 = GATConv(hidden * heads, classes) def forward(self, data): x, edge_index = data.x, data.edge_index x = self.gat1(x, edge_index) x = F.relu(x) x = F.dropout(x, training=self.training) x = self.gat2(x, edge_index) return F.log_softmax(x, dim=1)
-
训练和测试
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = GAT_Net(dataset.num_node_features, 16, dataset.num_classes, heads=4).to(device) data = dataset[0].to(device) optimizer = torch.optim.Adam(model.parameters(), lr=0.01) model.train() for epoch in range(200): optimizer.zero_grad() out = model(data) loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask]) loss.backward() optimizer.step() model.eval() _, pred = model(data).max(dim=1) correct = pred[data.test_mask].eq(data.y[data.test_mask]).sum() acc = int(correct) / int(data.test_mask.sum()) print('GAT', acc)
更多推荐
已为社区贡献1条内容
所有评论(0)