迁移学习之ResNet50和ResNet101(图像识别)
文章目录1.实现的效果:2.主文件TransorResNet.py:1.实现的效果:实际的图片:(1)可以看到ResNet50预测的前三个结果中第一个结果为:whippet(小灵狗)(2)ResNet50预测的前三个结果中第一个结果为:Walker_hound(步行猎犬)(3)**从结果上来看,比之前的VGG16和VGG19预测的效果都要好(这里虽然不知道图片中的够具体是什么狗,但是结果都预测成了
1.实现的效果:
实际的图片:
(1)可以看到ResNet50预测的前三个结果中第一个结果为:whippet(小灵狗)
(2)ResNet50预测的前三个结果中第一个结果为:Walker_hound(步行猎犬)
(3)从结果上来看,比之前的VGG16和VGG19预测的效果都要好(这里虽然不知道图片中的够具体是什么狗,但是结果都预测成了“狗”的类别)
关于InceptionV3(159层),Xception(126层),Inception_ResNet_V2(572层):
https://mydreamambitious.blog.csdn.net/article/details/123907490
关于VGG16和VGG19:
https://mydreamambitious.blog.csdn.net/article/details/123906643
关于MobileNet(88层)和MobileNetV2(88层):
https://mydreamambitious.blog.csdn.net/article/details/123907955
关于DenseNet121(121层),DenseNet169(169层),DenseNet201(201层):
https://mydreamambitious.blog.csdn.net/article/details/123908742
EfficientNetBX
https://mydreamambitious.blog.csdn.net/article/details/123929264
2.主文件TransorResNet.py:
import os
import keras
import numpy as np
from PIL import Image
from keras.preprocessing import image
from keras.preprocessing.image import img_to_array
from keras.applications.resnet import preprocess_input,decode_predictions
def load_ResNet50():
#加载ResNet50并且保留顶层(也就是全连接层)
model_ResNet50=keras.applications.resnet.ResNet50(weights='imagenet')
#图形路径
curr_path=os.getcwd()
img_path=curr_path+'\\images\\train\\dog\\1.jpg'
#将图像转换为网络需要的大小,因为我们这里加载的模型都是固定输入大小224*224
img=image.load_img(img_path,target_size=(224,224))
#首先需要转换为向量的形式
img_out=image.img_to_array(img)
#扩充维度
img_out=np.expand_dims(img_out,axis=0)
#对输入的图像进行处理
img_out=preprocess_input(img_out)
# decode the results into a list of tuples (class, description, probability)
# (one such list for each sample in the batch)
#上面这段话的意思是输出包括(类别,图像描述,输出概率)
preds=model_ResNet50.predict(img_out)
#输出前三个结果的可能性
print('Predicted: ',decode_predictions(preds,top=3)[0])
print('Predicted: ',decode_predictions(preds,top=3))
def load_ResNet101():
# 加载ResNet50并且保留顶层(也就是全连接层)
model_ResNet50 = keras.applications.resnet.ResNet101(weights='imagenet')
# 图形路径
img_path = 'images/train/dog/1.jpg'
# 将图像转换为网络需要的大小,因为我们这里加载的模型都是固定输入大小224*224
img = image.load_img(img_path, target_size=(224, 224))
# 首先需要转换为向量的形式
img_out = image.img_to_array(img)
# 扩充维度
img_out = np.expand_dims(img_out, axis=0)
# 对输入的图像进行处理
img_out = preprocess_input(img_out)
# decode the results into a list of tuples (class, description, probability)
# (one such list for each sample in the batch)
# 上面这段话的意思是输出包括(类别,图像描述,输出概率)
preds = model_ResNet50.predict(img_out)
# 输出前三个结果的可能性
print('Predicted: ', decode_predictions(preds, top=3)[0])
print('Predicted: ', decode_predictions(preds, top=3))
if __name__ == '__main__':
print('Pycharm')
print('load_ResNet50:\n')
load_ResNet50()
print('load_ResNet101:\n')
load_ResNet101()
更多推荐
所有评论(0)