(conda + pip) 配置各版本 Pytorch 深度学习环境
目录1. 前言2. 配置镜像源3. pytorch,torchvision,python 版本对应4. 创建并进入虚拟环境5. Pytorch 0.4.16. Pytorch 1.0.07. Pytorch 1.0.18. Pytorch 1.1.09. Pytorch 1.2.010. Pytorch 1.4.011. Pytorch 1.5.012. Pytorch 1.5.113. Pyto
·
目录
1. 前言
- 利用 Anaconda 配置 Pytorch 深度学习环境时利用官网链接给出的安装指令安装会很慢,经常报错,为此整理目前主流版本 pytorch 深度学习环境配置指令,以下指令适用 Windows 操作系统,在 Anaconda Prompt 中运行。
- 另外有时使用 conda 安装会报错,文中包括 pip 安装的指令,由于官网给出的 pip 安装方法多少不太友好,文中进行了一定改进,绝大部分指令亲测有效。
2. 配置镜像源
提前说:如果配置镜像源后报 HTTP 错误,只需要将源链接中的 https://… 中的 s 删掉就行
清华源
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
conda config --set show_channel_urls yes
中科大源
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/msys2/
conda config --set show_channel_urls yes
3. pytorch,torchvision,python 版本对应
pytorch,torchvision,python 三者的对应关系来源于 pytorch 官方 github,链接:https://github.com/pytorch/vision#installation
4. 创建并进入虚拟环境
创建一个虚拟环境,其中 pt 是自定义虚拟环境名称,另外根据踩坑经验 python 3.6.5 版本可以适配比较多的 pytorch 版本和一些额外包,建议创建环境时 python 解释器版本选择 3.6.5 版本。
conda create -n pt python=3.6.5
随后点击 y 同意安装,等待一会进入虚拟环境。
activate pt
5. Pytorch 0.4.1
# conda
conda install pytorch==0.4.1 torchvision==0.2.1 cuda90 # CUDA 9.0
conda install pytorch==0.4.1 torchvision==0.2.1 cuda92 # CUDA 9.2
conda install pytorch==0.4.1 torchvision==0.2.1 cuda80 # CUDA 8.0
conda install pytorch==0.4.1 torchvision==0.2.1 cuda75 # CUDA 7.5
conda install pytorch==0.4.1 torchvision==0.2.1 cpuonly # CPU 版本
# pip
pip install https://download.pytorch.org/whl/cu90/torch-0.4.1-cp36-cp36m-win_amd64.whl torchvision==0.2.1 # CUDA 9.0
pip install https://download.pytorch.org/whl/cu92/torch-0.4.1-cp36-cp36m-win_amd64.whl torchvision==0.2.1 # CUDA 9.2
pip install https://download.pytorch.org/whl/cu80/torch-0.4.1-cp36-cp36m-win_amd64.whl torchvision==0.2.1 # CUDA 8.0
pip install https://download.pytorch.org/whl/cu75/torch-0.4.1-cp36-cp36m-win_amd64.whl torchvision==0.2.1 # CUDA 7.5
pip install https://download.pytorch.org/whl/cpu/torch-0.4.1-cp36-cp36m-win_amd64.whl torchvision==0.2.1 # CPU 版本
6. Pytorch 1.0.0
# conda
conda install pytorch==1.0.0 torchvision==0.2.1 cuda100 # CUDA 10.0
conda install pytorch==1.0.0 torchvision==0.2.1 cuda90 # CUDA 9.0
conda install pytorch==1.0.0 torchvision==0.2.1 cuda80 # CUDA 8.0
conda install pytorch-cpu==1.0.0 torchvision-cpu==0.2.1 cpuonly # CPU 版本
# pip
pip install https://download.pytorch.org/whl/cu100/torch-1.0.0-cp36-cp36m-win_amd64.whl torchvision==0.2.1 # CUDA 10.0
pip install https://download.pytorch.org/whl/cu90/torch-1.0.0-cp36-cp36m-win_amd64.whl torchvision==0.2.1 # CUDA 9.0
pip install https://download.pytorch.org/whl/cu80/torch-1.0.0-cp36-cp36m-win_amd64.whl torchvision==0.2.1 # CUDA 8.0
pip install https://download.pytorch.org/whl/cpu/torch-1.0.0-cp36-cp36m-win_amd64.whl torchvision==0.2.1 # CPU 版本
7. Pytorch 1.0.1
# conda
conda install pytorch==1.0.1 torchvision==0.2.2 cudatoolkit=10.0 # CUDA 10.0
conda install pytorch==1.0.1 torchvision==0.2.2 cudatoolkit=9.0 # CUDA 9.0
conda install pytorch-cpu==1.0.1 torchvision-cpu==0.2.2 cpuonly # CPU 版本
# pip
pip install https://download.pytorch.org/whl/cu100/torch-1.0.1-cp36-cp36m-win_amd64.whl torchvision==0.2.2 # CUDA 10.0
pip install https://download.pytorch.org/whl/cu90/torch-1.0.1-cp36-cp36m-win_amd64.whl torchvision==0.2.2 # CUDA 9.0
pip install https://download.pytorch.org/whl/cpu/torch-1.0.1-cp36-cp36m-win_amd64.whl torchvision==0.2.2 # CPU 版本
8. Pytorch 1.1.0
# conda
conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=10.0 # CUDA 10.0
conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=9.0 # CUDA 9.0
conda install pytorch-cpu==1.1.0 torchvision-cpu==0.3.0 cpuonly # CPU 版本
# pip
pip install https://download.pytorch.org/whl/cu100/torch-1.1.0-cp36-cp36m-win_amd64.whl torchvision==0.3.0 # CUDA 10.0
pip install https://download.pytorch.org/whl/cu90/torch-1.1.0-cp36-cp36m-win_amd64.whl torchvision==0.3.0 # CUDA 9.0
pip install https://download.pytorch.org/whl/cpu/torch-1.1.0-cp36-cp36m-win_amd64.whl torchvision==0.3.0 # CPU 版本
9. Pytorch 1.2.0
# conda
conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 # CUDA 10.0
conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=9.2 # CUDA 9.2
conda install pytorch==1.2.0 torchvision==0.4.0 cpuonly # CPU 版本
# pip
pip install torch==1.2.0+cu100 torchvision==0.4.0+cu100 -f https://download.pytorch.org/whl/torch_stable.html # CUDA 10.0
pip install torch==1.2.0+cu92 torchvision==0.4.0+cu92 -f https://download.pytorch.org/whl/torch_stable.html # CUDA 9.2
pip install torch==1.2.0+cpu torchvision==0.4.0+cpu -f https://download.pytorch.org/whl/torch_stable.html # CPU 版本
10. Pytorch 1.4.0
# conda
conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 # CUDA 10.1
conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=9.2 # CUDA 9.2
conda install pytorch==1.4.0 torchvision==0.5.0 cpuonly # CPU 版本
# pip
pip install torch==1.4.0+cu101 torchvision==0.5.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html # CUDA 10.1
pip install torch==1.4.0+cu92 torchvision==0.5.0+cu92 -f https://download.pytorch.org/whl/torch_stable.html # CUDA 9.2
pip install torch==1.4.0+cpu torchvision==0.5.0+cpu -f https://download.pytorch.org/whl/torch_stable.html # CPU 版本
11. Pytorch 1.5.0
# conda
conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=10.2 # CUDA 10.2
conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=10.1 # CUDA 10.1
conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=9.2 # CUDA 9.2
conda install pytorch==1.5.0 torchvision==0.6.0 cpuonly # CPU 版本
# pip
pip install torch==1.5.0+cu102 torchvision==0.6.0+cu102 -f https://download.pytorch.org/whl/torch_stable.html # CUDA 10.2
pip install torch==1.5.0+cu101 torchvision==0.6.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html # CUDA 10.1
pip install torch==1.5.0+cu92 torchvision==0.6.0+cu92 -f https://download.pytorch.org/whl/torch_stable.html # CUDA 9.2
pip install torch==1.5.0+cpu torchvision==0.6.0+cpu -f https://download.pytorch.org/whl/torch_stable.html # CPU 版本
12. Pytorch 1.5.1
# conda
conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=10.2 # CUDA 10.2
conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=10.1 # CUDA 10.1
conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=9.2 # CUDA 9.2
conda install pytorch==1.5.1 torchvision==0.6.1 cpuonly # CPU 版本
# pip
pip install torch==1.5.1+cu102 torchvision==0.6.1+cu102 -f https://download.pytorch.org/whl/torch_stable.html # CUDA 10.2
pip install torch==1.5.1+cu101 torchvision==0.6.1+cu101 -f https://download.pytorch.org/whl/torch_stable.html # CUDA 10.1
pip install torch==1.5.1+cu92 torchvision==0.6.1+cu92 -f https://download.pytorch.org/whl/torch_stable.html # CUDA 9.2
pip install torch==1.5.1+cpu torchvision==0.6.1+cpu -f https://download.pytorch.org/whl/torch_stable.html # CPU 版本
13. Pytorch 1.6.0
# conda
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 # CUDA 10.2
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 # CUDA 10.1
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=9.2 # CUDA 9.2
conda install pytorch==1.6.0 torchvision==0.7.0 cpuonly # CPU 版本
# pip
pip install torch==1.6.0+cu102 torchvision==0.7.0+cu102 -f https://download.pytorch.org/whl/torch_stable.html # CUDA 10.2
pip install torch==1.6.0+cu101 torchvision==0.7.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html # CUDA 10.1
pip install torch==1.6.0+cu92 torchvision==0.7.0+cu92 -f https://download.pytorch.org/whl/torch_stable.html # CUDA 9.2
pip install torch==1.6.0+cpu torchvision==0.7.0+cpu -f https://download.pytorch.org/whl/torch_stable.html # CPU 版本
14. Pytorch 1.7.0
# conda
conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=11.0 # CUDA 11.0
conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.2 # CUDA 10.2
conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.1 # CUDA 10.1
conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=9.2 # CUDA 9.2
conda install pytorch==1.7.0 torchvision==0.8.0 cpuonly # CPU 版本
# pip
pip install torch==1.7.0+cu110 torchvision==0.8.0+cu110 -f https://download.pytorch.org/whl/torch_stable.html # CUDA 11.0
pip install torch==1.7.0+cu102 torchvision==0.8.0+cu102 -f https://download.pytorch.org/whl/torch_stable.html # CUDA 10.2
pip install torch==1.7.0+cu101 torchvision==0.8.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html # CUDA 10.1
pip install torch==1.7.0+cu92 torchvision==0.8.0+cu92 -f https://download.pytorch.org/whl/torch_stable.html # CUDA 9.2
pip install torch==1.7.0+cpu torchvision==0.8.0+cpu -f https://download.pytorch.org/whl/torch_stable.html # CPU 版本
15. Pytorch 1.7.1
# conda
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=11.0 # CUDA 11.0
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.2 # CUDA 10.2
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 # CUDA 10.1
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=9.2 # CUDA 9.2
conda install pytorch==1.7.1 torchvision==0.8.2 cpuonly # CPU 版本
# pip
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 -f https://download.pytorch.org/whl/torch_stable.html # CUDA 11.0
pip install torch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html # CUDA 10.2
pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 -f https://download.pytorch.org/whl/torch_stable.html # CUDA 10.1
pip install torch==1.7.1+cu92 torchvision==0.8.2+cu92 -f https://download.pytorch.org/whl/torch_stable.html # CUDA 9.2
pip install torch==1.7.1+cpu torchvision==0.8.2+cpu -f https://download.pytorch.org/whl/torch_stable.html # CPU 版本
16. Pytorch 1.8.0
# conda
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=11.1 # CUDA 11.1
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=10.2 # CUDA 10.2
conda install pytorch==1.8.0 torchvision==0.9.0 cpuonly # CPU 版本
# pip
pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html # CUDA 11.1
pip install torch==1.8.0+cu102 torchvision==0.9.0+cu102 -f https://download.pytorch.org/whl/torch_stable.html # CUDA 10.2
pip install torch==1.8.0+cpu torchvision==0.9.0+cpu0 -f https://download.pytorch.org/whl/torch_stable.html # CPU 版本
17. Pytorch 1.9.0
# conda
conda install pytorch==1.9.0 torchvision==0.10.0 cudatoolkit=11.1 # CUDA 11.1
conda install pytorch==1.9.0 torchvision==0.10.0 cudatoolkit=10.2 # CUDA 10.2
conda install pytorch==1.9.0 torchvision==0.10.0 cpuonly # CPU 版本
# pip
pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html # CUDA 11.1
pip install torch==1.9.0+cu102 torchvision==0.10.0+cu102 -f https://download.pytorch.org/whl/torch_stable.html # CUDA 10.2
pip install torch==1.9.0+cpu torchvision==0.10.0+cpu -f https://download.pytorch.org/whl/torch_stable.html # CPU 版本
18. 测试是否安装成功
- CPU 版本测试:继续运行 python 进入交互式环境,分别运行
import torch
,import torchvision
不报错则安装成功。 - GPU 版本测试:继续运行 python 进入交互式环境,分别运行
import torch
,import torchvision
不报错, 再运行print(torch.cuda.is_available())
输出 Ture 则表示安装成功。
更多推荐
已为社区贡献8条内容
所有评论(0)