pandas Dataframe实现批量修改值
pandas批量修改数据最详细讲解
·
在使用dataframe的时候 有时候会碰到需要批量修改数据的时候,今天主要说明两种情况
一.使用iloc对某几行某几列进行全部修该
二.对数据进行判定后,相互+/-/*某个数,使用内置函数
1.使用iloc对数据进行批量修改
使用iloc最简单的就是将数据批量修改为某个特定的值
以下是我随便写入的数据
现在将[‘d’,‘e’]列,[2,3,4]行的数据全部修改为0
import pandas as pd
data = pd.read_excel('some_chaneg.xlsx')
data1 = data
data1.iloc[2:5,3:] = 0
data1
.iloc用法[],先行后列,并且都是不包含最后一个元素,例如取[2,3,4]就是[2:5],列同样遵循此规则
2.对数据进行判定后,相互+/-/某个数*
第一种方法:使用内置函数where函数
Series.where(cond, other=nan, inplace=False, axis=None, level=None, errors='rais',...)
解释下来就是如果cond为真,则保持原来的值,否则替换为other,这里的cond和other参数由我们自己写入控制
# data2为data数据的一部分
data2 = data.iloc[0:,1:]
print(data2)
data2.where(data2>25, data2+5,inplace=True)
选取data2中<25的数据,全部加上5
第二种方法:使用mask函数
mask和where刚好相反
mask(cond, other=nan)
where:替换条件(condition)为False处的值
mask:替换条件(condition)为True处的值
还是以data2举例
data2.mask(data2<25, data2+5, inplace=True)
第三种方法:replace函数
replace可以替换文本值,也可以使用字典替换多个值
,也可以使用正则表达式嵌套方法,替换很多不同的值
替换文本值
# 替换文本值
data3 = data
data3.replace('wange', 'sheng', inplace=True)
data3
替换多个值
将所有的0和1互换
# 替换多个值
# 将所有的0和1互换
data3.replace({1:0,0:1},inplace=True)
运用正则表达式
将所有含英文字母的全部变成Anonymous
# 切记使用正则表达式的时候,一定要添加上regex=True
data3.replace('[a-zA-Z]+','Anonymous',regex=True,inplace=True)
更多推荐
已为社区贡献7条内容
所有评论(0)