python求矩阵逆、伪逆、转置、矩阵乘法
python求矩阵逆、伪逆、转置、矩阵乘法
·
1. python求矩阵的转置
G1 = np.transpose(G)
>>> import numpy as np
>>> G = np.array([[1,0,0,1],[0,1,0,-1],[0,0,1,1]])
>>> G1=np.transpose(G)
>>> G1
array([[ 1, 0, 0],
[ 0, 1, 0],
[ 0, 0, 1],
[ 1, -1, 1]])
2. python求矩阵乘法
G2 = np.dot(G,G1)
>>> import numpy as np
>>> G = np.array([[1,0,0,1],[0,1,0,-1],[0,0,1,1]])
>>> G1=np.transpose(G)
>>> G1
array([[ 1, 0, 0],
[ 0, 1, 0],
[ 0, 0, 1],
[ 1, -1, 1]])
>>> G2 = np.dot(G,G1)
>>> G2
array([[ 2, -1, 1],
[-1, 2, -1],
[ 1, -1, 2]])
3. python求矩阵的逆
G3 = np.linalg.inv(G2)
>>> import numpy as np
>>> G = np.array([[1,0,0,1],[0,1,0,-1],[0,0,1,1]])
>>> G1=np.transpose(G)
>>> G1
array([[ 1, 0, 0],
[ 0, 1, 0],
[ 0, 0, 1],
[ 1, -1, 1]])
>>> G2 = np.dot(G,G1)
>>> G2
array([[ 2, -1, 1],
[-1, 2, -1],
[ 1, -1, 2]])
>>> G3 = np.linalg.inv(G2)
>>> G3
array([[ 0.75, 0.25, -0.25],
[ 0.25, 0.75, 0.25],
[-0.25, 0.25, 0.75]])
4. python求矩阵的伪逆
K = np.linalg.pinv(J)
>>> import numpy as np
>>> J = np.array([[1,0,0,1],[1,1,0,0],[0,1,1,0],[0,0,1,1]])
>>> K = np.linalg.pinv(J)
>>> K
array([[ 0.375, 0.375, -0.125, -0.125],
[-0.125, 0.375, 0.375, -0.125],
[-0.125, -0.125, 0.375, 0.375],
[ 0.375, -0.125, -0.125, 0.375]])
5 python求解矩阵的特征值
B = np.linalg.eigvals(A)
>>> A = np.mat("0 0 0; -1 1 -1; 1 -1 1")
>>> A
matrix([[ 0, 0, 0],
[-1, 1, -1],
[ 1, -1, 1]])
>>> B = np.linalg.eigvals(A)
>>> B
array([2., 0., 0.])
6 python求解矩阵的特征值和特征向量
B,C = np.linalg.eig(A)
>>> A = np.array([[1,0,-1,0],[0,1,0,-1],[-1,0,1,0],[0,-1,0,1]])
>>> A
array([[ 1, 0, -1, 0],
[ 0, 1, 0, -1],
[-1, 0, 1, 0],
[ 0, -1, 0, 1]])
>>> B,C = np.linalg.eig(A)
>>> B
array([2., 0., 2., 0.])
>>> C
array([[ 0.70710678, 0.70710678, 0. , 0. ],
[ 0. , 0. , 0.70710678, 0.70710678],
[-0.70710678, 0.70710678, 0. , 0. ],
[ 0. , 0. , -0.70710678, 0.70710678]])
注: 这是返回单位化的特征向量
点击阅读全文
更多推荐
活动日历
查看更多
直播时间 2025-02-26 16:00:00


直播时间 2025-01-08 16:30:00


直播时间 2024-12-11 16:30:00


直播时间 2024-11-27 16:30:00


直播时间 2024-11-21 16:30:00


目录
所有评论(0)