Python实现手写数字的识别
输入层(input layer)是由训练集的实例特征向量传入,经过连接结点的权重(weight)传入下一层,一层的输出是下一层的输入,隐藏层的个数可以是任意的,输入层有一层,输出层有一层,每个单元(unit)也可以被称作神经结点,根据生物学来源定义,一层中加权的求和,然后根据非线性方程转化输出。多层向前神经网络由以下部分组成:输入层(input layer),隐藏层(hidden layers),
一、神经网络算法
1.多层向前神经网络(Multilayer Feed-Forward Neural Network)
Backpropagation被使用在多层向前神经网络上
多层向前神经网络由以下部分组成:输入层(input layer),隐藏层(hidden layers),输入层(output layers),每层由单元(units)组成。
输入层(input layer)是由训练集的实例特征向量传入,经过连接结点的权重(weight)传入下一层,一层的输出是下一层的输入,隐藏层的个数可以是任意的,输入层有一层,输出层有一层,每个单元(unit)也可以被称作神经结点,根据生物学来源定义,一层中加权的求和,然后根据非线性方程转化输出。作为多层向前神经网络,理论上,如果有足够多的隐藏层(hidden layers) 和足够大的训练集,可以拟出任何方程 。
2.利用 Backpropagation算法来设计神经网络
(1)通过迭代性的来处理训练集中的实例
(2)对比经过神经网络后输入层预测值(predicted value)-与真实值(target value)之间
(3)反方向(从输 出层=>隐藏层=>输入层)来以最小化误差(error)来更新每个连接的权重(weight)
(4)算法详细介绍
输入: D:数据集,1学习率(learning rate),一 个多层前向神经网络
输入: 一个训练好的神经网络(a trained neural network)
4.1初始化权重(weights)和偏向(bias):随机初始化在-1到1之间,或者-0.5到0.5之间,每个单元有
一个偏向
4.2对于每一个训练实例X,执行以下步骤:
4.3由输入层向前传送
4.4根据误差(erro)反向传送
输出层:
Ej = Oj(1-Oj)(Tj-Oj) Oj为计算值,Tj为真实值,Ej为每层误差
隐藏层:
Ej = Oj(1-Oj)
权重更新:
偏向更新:
(5)终止条件
5.1 权重的更新低于某个阈值
5.2预测的错误率低于某个阈值
5.3达到预设一定的循环次数
import numpy as np
def tanh(x):#双曲线函数
return np.tanh(x)
def tanh_deriv(x):#双曲线函数的导数
return 1.0 - np.tanh(x)*np.tanh(x)
def logistic(x):#逻辑函数
return 1/(1 + np.exp(-x))
def logistic_derivative(x):#逻辑函数的导数
return logistic(x)*(1-logistic(x))
class NeuralNetwork:#定义了一个关于神经网络的算法类
def __init__(self, layers, activation='tanh'):#构造函数
"""
:param layers: A list containing the number of units in each layer.
Should be at least two values
:param activation: The activation function to be used. Can be
"logistic" or "tanh"
"""
if activation == 'logistic':#判断所使用函数的类型
self.activation = logistic
self.activation_deriv = logistic_derivative
elif activation == 'tanh':
self.activation = tanh
self.activation_deriv = tanh_deriv
self.weights = []#定义了一个自身的权重
for i in range(1, len(layers) - 1):
self.weights.append((2*np.random.random((layers[i - 1] + 1, layers[i] + 1))-1)*0.25)
self.weights.append((2*np.random.random((layers[i] + 1, layers[i + 1]))-1)*0.25)
def fit(self, X, y, learning_rate=0.2, epochs=10000):#设定epochs为循环的最高次数,即到最高时就直接结束循环
X = np.atleast_2d(X)#将X转换为NUMPY包下的二维数组
temp = np.ones([X.shape[0], X.shape[1]+1])#最后的+1为偏向所在列
temp[:, 0:-1] = X # adding the bias unit to the input layer
X = temp
y = np.array(y)
for k in range(epochs):#k在第几次的循环中
i = np.random.randint(X.shape[0])
a = [X[i]]
for l in range(len(self.weights)): #going forward network, for each layer
a.append(self.activation(np.dot(a[l], self.weights[l]))) #Computer the node value for each layer (O_i) using activation function
error = y[i] - a[-1] #Computer the error at the top layer
deltas = [error * self.activation_deriv(a[-1])] #For output layer, Err calculation (delta is updated error)
#Staring backprobagation
for l in range(len(a) - 2, 0, -1): # we need to begin at the second to last layer
#Compute the updated error (i,e, deltas) for each node going from top layer to input layer
deltas.append(deltas[-1].dot(self.weights[l].T)*self.activation_deriv(a[l]))
deltas.reverse()
for i in range(len(self.weights)):
layer = np.atleast_2d(a[i])
delta = np.atleast_2d(deltas[i])
self.weights[i] += learning_rate * layer.T.dot(delta)
def predict(self, x):
x = np.array(x)
temp = np.ones(x.shape[0]+1)
temp[0:-1] = x
a = temp
for l in range(0, len(self.weights)):
a = self.activation(np.dot(a, self.weights[l]))
return a#返回输出层
二、调用已经写好的神经网络的类实现一个识别手写数字的应用
# 每个图片8x8 识别数字:0,1,2,3,4,5,6,7,8,9
import numpy as np
from sklearn.datasets import load_digits
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.preprocessing import LabelBinarizer
from NeuralNetwork import NeuralNetwork
from sklearn.model_selection import train_test_split
digits = load_digits()
X = digits.data
y = digits.target
X -= X.min() # normalize the values to bring them into the range 0-1
X /= X.max()
nn = NeuralNetwork([64, 100, 10], 'logistic')
X_train, X_test, y_train, y_test = train_test_split(X, y)
labels_train = LabelBinarizer().fit_transform(y_train)
labels_test = LabelBinarizer().fit_transform(y_test)
print("start fitting")
nn.fit(X_train, labels_train, epochs=3000)
predictions = []
for i in range(X_test.shape[0]):
o = nn.predict(X_test[i])
predictions.append(np.argmax(o))
print(confusion_matrix(y_test, predictions))
print(classification_report(y_test, predictions))
三、运行结果展示
其中对角线上的数字为正确识别的内容,其他位置不为0的都是识别错误的
由上图可以看出本次识别的平均准确率高达93%。
更多推荐










所有评论(0)