条件概率

在进入朴素贝叶斯分类算法的学习之前,我们需要先了解一些概率论的知识,首先来看看条件概率吧。
条件概率是指某一事件A发生的可能性,表示P(A)。而条件概率指的是某一事件A已经发生了条件下,另一事件B发生的可能性,表示为P(B|A)。
怎么计算条件概率呢?设A,B是两个独立事件,且P(A)>0,称P(B|A)=P(AB)/P(A)为在事件A发生的条件下,事件B发生的条件概率。P(AB)表示事件A和B同时发生的概率。
例如:在这里插入图片描述
现在想要算一下已知产品是甲厂生产的,那么产品是次品的概率是多少,这个时候其实就是在算条件概率。
假设事件A为产品是甲厂生产的,事件B为产品是次品,则根据表中数据可知P(AB)=25/1200 P(A)=500/1200 则P(B|A)=P(AB)/P(A)=25/500

贝叶斯公式

先来了解一下全概率公式的相关知识。简单来说全概率公式就是当为了达到某种目的,但是达到目的有很多种方式,如果想知道通过所有方式能够达到目的的概率是多少的话,就使用全概率公式。
在这里插入图片描述

当已知引发事件发生的各种原因的概率,想要算该事件发生的概率时,我们可以用全概率公式。但是如若现在反过来,已知事件已经发生了,但是想要计算引发该事件的各种原因的概率时,我们就需要用到贝叶斯公式。
在这里插入图片描述
转化为一个简单的数学变换
在这里插入图片描述

拉普拉斯平滑

零概率:在计算事件的概率时,如果某个事件在观察样本库(训练集)中没有出现过,会导致该事件的概率结果是0。但是对于实际情况来说这是不合理的,不能因为一个事件没有观察到,就被认为该事件一定不可能发生(即该事件的概率为0)。这时就需要我们的拉普拉斯平滑(Laplacian smoothing) 。
拉普拉斯平滑指的是,假设N表示训练数据集总共有多少种类别,Ni表示训练数据集中第i总共有多少种取值。则训练过程种在算类别的概率时分子加1,分母加N,算条件概率时分子加1,分母加Ni。

文本向量化

由于数据集中每一条数据都是很长的一个字符串,所以我们需要对数据进行向量化的处理。例如,I have a apple! I have a pen!可能需要将该字符串转换成向量如[10, 7, 0, 1, 2, 6, 22, 100, 8, 0, 1, 0]。sklearn提供了实现词频向量化功能的CountVectorizer类。想要对数据进行向量化

from sklearn.feature_ext\fraction.text import CountVectorizer
#实例化向量化对象  
vec = CountVectorizer()  
#将训练集中的新闻向量化  
X_train = vec.fit_transform(X_train)  
#将测试集中的新闻向量化  
X_test = vec.transform(X_test) 

但是仅仅通过统计词频的方式来将文本转换成向量会出现一个问题:长的文章词语出现的次数会比短的文章要多,而实际上两篇文章可能谈论的都是同一个主题。为了解决这个问题,我们可以使用tf-idf来构建文本向量,sklearn中已经提供了tf-idf的接口

from sklearn.feature_ext\fraction.text import TfidfTransformer
#实例化tf-idf对象  
tfidf = TfidfTransformer()  
#将训练集中的词频向量用tf-idf进行转换  
X_train = tfidf.fit_transform(X_train_count_vectorizer)  
#将测试集中的词频向量用tf-idf进行转换  
X_test = vec.transform(X_test_count_vectorizer) 

MultinomialNB

MultinomialNB是sklearn中多项分布数据的朴素贝叶斯算法的实现,并且是用于文本分类的经典朴素贝叶斯算法。在本关中建议使用MultinomialNB来实现文本分类功能。在MultinomialNB实例化时alpha是一个常用的参数。
alpha: 平滑因子。当等于1时,做的是拉普拉斯平滑;当小于1时做的是Lidstone平滑;当等于0时,不做任何平滑处理。

from sklearn.naive_bayes import MultinomialNB

clf = MultinomialNB()  
clf.fit(X_train, Y_train)  
result = clf.predict(X_test) 

来源:头歌

Logo

华为开发者空间,是为全球开发者打造的专属开发空间,汇聚了华为优质开发资源及工具,致力于让每一位开发者拥有一台云主机,基于华为根生态开发、创新。

更多推荐