【python】SVM算法介绍
支持向量机(support vector machines,SVM)是一种二分类模型,它将实例的特征向量映射为空间中的一些点,SVM的目的就是想要画出一条线,以“最好地”区分这两类点,以至如果以后有了新的点,这条线也能做出很好的分类。SVM适合中小型数据样本、非线性、高维的分类问题。SVM最早是由Vladimir N. vapnik和Alexey 'Ya.Chervonenkis在1963年提出,
·
支持向量机(support vector machines,SVM)是一种二分类模型,它将实例的特征向量映射为空间中的一些点,SVM的目的就是想要画出一条线,以“最好地”区分这两类点,以至如果以后有了新的点,这条线也能做出很好的分类。SVM适合中小型数据样本、非线性、高维的分类问题。
SVM最早是由Vladimir N. vapnik和Alexey 'Ya.Chervonenkis在1963年提出,目前的版本(soft margin)是由Corinna Cortes和Vapnik在1993年提出,并在1995年发表。深度学习(2012)出现之前,SVM被认为机器学习中近十几年来最成功,表现最好的算法。
1.1 SVM基本概念
将实例的特征向量(以二维为例)映射为空间中的一些点,如下图的实心点和空心点,它们属于不同的两类。SVM的目的就是想要画出一条线,以“最好地"区分这两类点,以至如果以后有了新的点,这条线也能做出很好的分类。
1.2 hard-margin SVM
2.实例演示
2.1基于sklearn包实现通过svm算法绘图的功能
from sklearn import svm
import numpy as np
import matplotlib.pyplot as plt
#准备训练样本
x=[[1,8],[3,20],[1,15],[3,35],[5,35],[4,40],[7,80],[6,49]]
y=[1,1,-1,-1,1,-1,-1,1]
##开始训练
clf=svm.SVC() ##默认参数:kernel='rbf'
clf.fit(x,y)
#print("预测...")
#res=clf.predict([[2,2]]) ##两个方括号表面传入的参数是矩阵而不是list
##根据训练出的模型绘制样本点
for i in x:
res=clf.predict(np.array(i).reshape(1, -1))
if res > 0:
plt.scatter(i[0],i[1],c='r',marker='*')
else :
plt.scatter(i[0],i[1],c='g',marker='*')
##生成随机实验数据(15行2列)
rdm_arr=np.random.randint(1, 15, size=(15,2))
##回执实验数据点
for i in rdm_arr:
res=clf.predict(np.array(i).reshape(1, -1))
if res > 0:
plt.scatter(i[0],i[1],c='r',marker='.')
else :
plt.scatter(i[0],i[1],c='g',marker='.')
##显示绘图结果
plt.show()
2.2 核函数的实现
from sklearn import svm
import numpy as np
import matplotlib.pyplot as plt
##设置子图数量
fig, axes = plt.subplots(nrows=2, ncols=2,figsize=(7,7))
ax0, ax1, ax2, ax3 = axes.flatten()
#准备训练样本
x=[[1,8],[3,20],[1,15],[3,35],[5,35],[4,40],[7,80],[6,49]]
y=[1,1,-1,-1,1,-1,-1,1]
'''
说明1:
核函数(这里简单介绍了sklearn中svm的四个核函数,还有precomputed及自定义的)
LinearSVC:主要用于线性可分的情形。参数少,速度快,对于一般数据,分类效果已经很理想
RBF:主要用于线性不可分的情形。参数多,分类结果非常依赖于参数
polynomial:多项式函数,degree 表示多项式的程度-----支持非线性分类
Sigmoid:在生物学中常见的S型的函数,也称为S型生长曲线
说明2:根据设置的参数不同,得出的分类结果及显示结果也会不同
'''
##设置子图的标题
titles = ['LinearSVC (linear kernel)',
'SVC with polynomial (degree 3) kernel',
'SVC with RBF kernel', ##这个是默认的
'SVC with Sigmoid kernel']
##生成随机试验数据(15行2列)
rdm_arr=np.random.randint(1, 15, size=(15,2))
def drawPoint(ax,clf,tn):
##绘制样本点
for i in x:
ax.set_title(titles[tn])
res=clf.predict(np.array(i).reshape(1, -1))
if res > 0:
ax.scatter(i[0],i[1],c='r',marker='*')
else :
ax.scatter(i[0],i[1],c='g',marker='*')
##绘制实验点
for i in rdm_arr:
res=clf.predict(np.array(i).reshape(1, -1))
if res > 0:
ax.scatter(i[0],i[1],c='r',marker='.')
else :
ax.scatter(i[0],i[1],c='g',marker='.')
if __name__=="__main__":
##选择核函数
for n in range(0,4):
if n==0:
clf = svm.SVC(kernel='linear').fit(x, y)
drawPoint(ax0,clf,0)
elif n==1:
clf = svm.SVC(kernel='poly', degree=3).fit(x, y)
drawPoint(ax1,clf,1)
elif n==2:
clf= svm.SVC(kernel='rbf').fit(x, y)
drawPoint(ax2,clf,2)
else :
clf= svm.SVC(kernel='sigmoid').fit(x, y)
drawPoint(ax3,clf,3)
plt.show()
2.3 线性分类函数:LinearSVC()
from sklearn import svm
import numpy as np
import matplotlib.pyplot as plt
##设置子图数量
fig, axes = plt.subplots(nrows=1, ncols=2,figsize=(7,7))
ax0, ax1 = axes.flatten()
#准备训练样本
x=[[1,8],[3,20],[1,15],[3,35],[5,35],[4,40],[7,80],[6,49]]
y=[1,1,-1,-1,1,-1,-1,1]
##设置子图的标题
titles = ['SVC (linear kernel)',
'LinearSVC']
##生成随机试验数据(15行2列)
rdm_arr=np.random.randint(1, 15, size=(15,2))
##画图函数
def drawPoint(ax,clf,tn):
##绘制样本点
for i in x:
ax.set_title(titles[tn])
res=clf.predict(np.array(i).reshape(1, -1))
if res > 0:
ax.scatter(i[0],i[1],c='r',marker='*')
else :
ax.scatter(i[0],i[1],c='g',marker='*')
##绘制实验点
for i in rdm_arr:
res=clf.predict(np.array(i).reshape(1, -1))
if res > 0:
ax.scatter(i[0],i[1],c='r',marker='.')
else :
ax.scatter(i[0],i[1],c='g',marker='.')
if __name__=="__main__":
##选择核函数
for n in range(0,2):
if n==0:
clf = svm.SVC(kernel='linear').fit(x, y)
drawPoint(ax0,clf,0)
else :
clf= svm.LinearSVC().fit(x, y)
drawPoint(ax1,clf,1)
plt.show()
更多推荐
已为社区贡献1条内容
所有评论(0)