很长时间没有更新内容了,上一篇可以看做是刚接触深度学习写的,看法非常狭隘,内容非常粗糙。
在最近的学习中接触到了Pytorch,不得不承认,相对于TensorFlow来讲,灵活很多。
这次就使用pytroch来进行一下交通流预测,数据和上一篇文章数据一样。

百度网盘: https://pan.baidu.com/s/19vKN2eZZPbOg36YEWts4aQ
密码 4uh7

准备开始

加载数据

导入数据的时候,需要把Network这一列删除
在这里插入图片描述

f = pd.read_csv('..\Desktop\AE86.csv')
# 从新设置列标
def set_columns():
    columns = []
    for i in f.loc[2]:
        columns.append(i.strip())
    return columns
f.columns = set_columns()
f.drop([0,1,2], inplace = True)
# 读取数据
data = f['Total Carriageway Flow'].astype(np.float64).values[:, np.newaxis]
data.shape # (2880, 1)

构造数据集

pytorch对于Batch输入,提供了规范的划分数据的模块, Dataset 和 DataLoader,这两个是很多刚使用pytorch的朋友头疼的地方,我简单说一下就不专门讲太多了可以去官网或者其他博客看一下

Dataset相当于装东西的大箱子,比如装苹果的箱子,一个大箱子里可以有很多小盒子,小盒子里装着苹果,不同的大箱子里小盒子装的苹果个数可以是不同的
Dataloader相当于使用什么方法在大箱子里拿盒子,比如,可以按顺序一次拿10个小盒子或者随机的拿5个小盒子

但这种使用Dataset和DataLoader创建数据集并不是唯一的方法,比如也可以使用上篇文章中使用的方法直接形成数据

当然,既然是使用pytorch那就使用它的特色吧,下面基于以上Dataset的方法,我们就可以构造自己的数据集

定义自己的Dataset比较麻烦, Dataset必须包括两部分:len 和 getitem

len 用来统计生成Dataset的长度
getitem 是可以index来获取相应的数据

同时为了方便,这Dataset中,增加了数据标准化以及反标准化的过程

构造Dataset

class LoadData(Dataset):
    def __init__(self, data, time_step, divide_days, train_mode):
        self.train_mode = train_mode
        self.time_step = time_step
        self.train_days = divide_days[0]
        self.test_days = divide_days[1]
        self.one_day_length = int(24 * 4)
        # flow_norm (max_data. min_data)
        self.flow_norm, self.flow_data = LoadData.pre_process_data(data)
        # 不进行标准化
#         self.flow_data = data
        
    def __len__(self, ):
        if self.train_mode == "train":
            return self.train_days * self.one_day_length - self.time_step
        elif self.train_mode == "test":
            return self.test_days * self.one_day_length
        else:
            raise ValueError(" train mode error")
    def __getitem__(self, index):
        if self.train_mode == "train":
            index = index
        elif self.train_mode == "test":
            index += self.train_days * self.one_day_length
        else:
            raise ValueError(' train mode error')
        data_x, data_y = LoadData.slice_data(self.flow_data, self.time_step, index,
                                            self.train_mode)
        data_x = LoadData.to_tensor(data_x)
        data_y = LoadData.to_tensor(data_y)
        return {"flow_x": data_x, "flow_y": data_y}
    # 这一步就是划分数据的重点部分
    @staticmethod
    def slice_data(data, time_step, index, train_mode):
        if train_mode == "train":
            start_index = index
            end_index = index + time_step
        elif train_mode == "test":
            start_index = index - time_step
            end_index = index
        else:
            raise ValueError("train mode error")
        data_x = data[start_index: end_index, :]
        data_y = data[end_index]
        return data_x, data_y
    # 数据与处理
    @staticmethod
    def pre_process_data(data, ):
    # data N T D
        norm_base = LoadData.normalized_base(data)
        normalized_data = LoadData.normalized_data(data, norm_base[0], norm_base[1])
        return norm_base, normalized_data
    # 生成原始数据中最大值与最小值
    @staticmethod
    def normalized_base(data):
        max_data = np.max(data, keepdims=True) #keepdims保持维度不变
        min_data = np.min(data, keepdims=True)
        # max_data.shape  --->(1, 1)
        return max_data, min_data
    # 对数据进行标准化
    @staticmethod
    def normalized_data(data, max_data, min_data):
        data_base = max_data - min_data
        normalized_data = (data - min_data) / data_base
        return normalized_data
    @staticmethod
    # 反标准化  在评价指标误差以及画图的使用使用
    def recoverd_data(data, max_data, min_data):
        data_base = max_data - min_data
        recoverd_data = data * data_base - min_data
        return recoverd_data
    @staticmethod
    def to_tensor(data):
        return torch.tensor(data, dtype=torch.float)

生成训练数据

# 使用前25天作为训练集,后5天作为预测集
divide_days = [25, 5]
time_step = 5 #时间步长
batch_size = 48 
train_data = LoadData(data, time_step, divide_days, "train")
test_data = LoadData(data,  time_step, divide_days, "test")
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True, )
test_loader = DataLoader(test_data,batch_size=batch_size, shuffle=False, )

在test数据中,不使用shuffle随机化,可以使用train_data[0]看一下,返回出来第一个时间步的数据,以及时间步+1的值,但这是已经归一化后的数据,在init函数中可以不使用pre_process_data函数,这样来检测一下数据是否正确

在这里插入图片描述
不使用归一化第一个时间步的数据
在这里插入图片描述

需要说一下,DataLoader是一个item的数据类型,需要循环取出

在这里插入图片描述

构造LSTM模型

pytorch比较灵活,可以清楚的看到模型内部的运算过程,使用pytorch构建模型,一般包括两部分 : init 和 forward

init 定义需要使用的模型结构
forward进行计算

# LSTM构建网络
class LSTM(nn.Module):
    def __init__(self, input_num, hid_num, layers_num, out_num, batch_first=True):
        super().__init__()
        self.l1 = nn.LSTM(
            input_size = input_num,
            hidden_size = hid_num,
            num_layers = layers_num,
            batch_first = batch_first
        )
        self.out = nn.Linear(hid_num, out_num)
    def forward(self, data):
        flow_x = data['flow_x']   # B * T * D
        l_out, (h_n, c_n) = self.l1(flow_x, None)  # None表示第一次 hidden_state是0
        print(l_out[:, -1, :].shape)
        out = self.out(l_out[:, -1, :])
        return out

pytorch中的LSTM与TensorFlow不同的是,pytorch中的LSTM可以一次定义多个层,不需要一直叠加LSTM层,而且每次LSTM返回三个部分的值:所有层的输出(l_out)、隐藏状态(l_h)和细胞状态(c_n)。

l_out是集合了每个变量的l_h输出, 所以return的时候,可以在l_c中切片取最后一个值,当然也可以直接使用l_h

pytorch也可以使用Sequential,如果要使用Seqential就需要修改上面的Dataset,因为Dataset定义的使用返回是一个字典{“flow_x”, “flow_y”},如果使用Sequential传入模型的只能是"flow_x"。或者像tensorflow一样,不使用Dataset构建数据,直接通过一系列的方法进行划分(和上一篇文章一样)。

定义模型和损失函数

input_num = 1 # 输入的特征维度
hid_num = 50  # 隐藏层个数
layers_num = 3 # LSTM层个数
# out_num = 1
lstm = LSTM(input_num, hid_num, layers_num, out_num)
loss_func = nn.MSELoss()
optimizer = torch.optim.Adam(lstm.parameters())

模型预测

pytorch中不像tensorflow那么容易描述损失值,所以输出都需要自己来进行表示,当然也可以使用Tensorboard来查看损失值变化,但对新手而言比较麻烦

lstm.train()
epoch_loss_change = []
for epoch in range(30):
    epoch_loss = 0.0
    start_time = time.time()
    for data_ in train_loader:
        lstm.zero_grad()
        predict = lstm(data_)
        loss = loss_func(predict, data_['flow_y'])
        epoch_loss += loss.item()
        loss.backward()
        optimizer.step()
    epoch_loss_change.append(1000 * epoch_loss / len(train_data))
    end_time = time.time()
    print("Epoch: {:04d}, Loss: {:02.4f}, Time: {:02.2f} mins".format(epoch, 1000 * epoch_loss / len(train_data),
                                                                          (end_time-start_time)/60))
plt.plot(epoch_loss_change)

模型评价

lstm.eval()
with torch.no_grad(): # 关闭梯度
    total_loss = 0.0
    pre_flow = np.zeros([batch_size, 1]) # [B, D],T=1 # 目标数据的维度,用0填充
    real_flow = np.zeros_like(pre_flow)
    for data_ in test_loader:
        pre_value = lstm(data_)
        loss = loss_func(pre_value, data_['flow_y'])
        total_loss += loss.item()
        # 反归一化
        pre_value = LoadData.recoverd_data(pre_value.detach().numpy(),
                                        test_data.flow_norm[0].squeeze(1), # max_data
                                        test_data.flow_norm[1].squeeze(1), # min_data
                                       )
        target_value = LoadData.recoverd_data(data_['flow_y'].detach().numpy(),
                                    test_data.flow_norm[0].squeeze(1), 
                                    test_data.flow_norm[1].squeeze(1),
                                  )
        pre_flow = np.concatenate([pre_flow, pre_value])
        real_flow = np.concatenate([real_flow, target_value])
    pre_flow  = pre_flow[batch_size: ]
    real_flow  = real_flow[batch_size: ]
#     # 计算误差
mse = mean_squared_error(pre_flow, real_flow)
rmse = math.sqrt(mean_squared_error(pre_flow, real_flow))
mae = mean_absolute_error(pre_flow, real_flow)
print('均方误差---', mse)
print('均方根误差---', rmse)
print('平均绝对误差--', mae)

# 画出预测结果图
font_set = FontProperties(fname=r"C:\Windows\Fonts\simsun.ttc", size=15)    # 中文字体使用宋体,15号
plt.figure(figsize=(15,10))
plt.plot(real_flow, label='Real_Flow', color='r', )
plt.plot(pre_flow, label='Pre_Flow')
plt.xlabel('测试序列', fontproperties=font_set)
plt.ylabel('交通流量/辆', fontproperties=font_set)
plt.legend() 
# 预测储存图片
# plt.savefig('...\Desktop\123.jpg')


完整代码

import pandas as pd
import numpy as np
import torch 
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as Data
from torchsummary import summary
import math
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
import time
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error, mean_absolute_error
import math
from matplotlib.font_manager import FontProperties  # 画图时可以使用中文

# 加载数据
f = pd.read_csv('..\Desktop\AE86.csv')
# 从新设置列标
def set_columns():
    columns = []
    for i in f.loc[2]:
        columns.append(i.strip())
    return columns
f.columns = set_columns()
f.drop([0,1,2], inplace = True)
# 读取数据
data = f['Total Carriageway Flow'].astype(np.float64).values[:, np.newaxis]

class LoadData(Dataset):
    def __init__(self, data, time_step, divide_days, train_mode):
        self.train_mode = train_mode
        self.time_step = time_step
        self.train_days = divide_days[0]
        self.test_days = divide_days[1]
        self.one_day_length = int(24 * 4)
        # flow_norm (max_data. min_data)
        self.flow_norm, self.flow_data = LoadData.pre_process_data(data)
        # 不进行标准化
        # self.flow_data = data
        
    def __len__(self, ):
        if self.train_mode == "train":
            return self.train_days * self.one_day_length - self.time_step
        elif self.train_mode == "test":
            return self.test_days * self.one_day_length
        else:
            raise ValueError(" train mode error")
    def __getitem__(self, index):
        if self.train_mode == "train":
            index = index
        elif self.train_mode == "test":
            index += self.train_days * self.one_day_length
        else:
            raise ValueError(' train mode error')
        data_x, data_y = LoadData.slice_data(self.flow_data, self.time_step, index,
                                            self.train_mode)
        data_x = LoadData.to_tensor(data_x)
        data_y = LoadData.to_tensor(data_y)
        return {"flow_x": data_x, "flow_y": data_y}
    # 这一步就是划分数据
    @staticmethod
    def slice_data(data, time_step, index, train_mode):
        if train_mode == "train":
            start_index = index
            end_index = index + time_step
        elif train_mode == "test":
            start_index = index - time_step
            end_index = index
        else:
            raise ValueError("train mode error")
        data_x = data[start_index: end_index, :]
        data_y = data[end_index]
        return data_x, data_y
    # 数据与处理
    @staticmethod
    def pre_process_data(data, ):
        norm_base = LoadData.normalized_base(data)
        normalized_data = LoadData.normalized_data(data, norm_base[0], norm_base[1])
        return norm_base, normalized_data
    # 生成原始数据中最大值与最小值
    @staticmethod
    def normalized_base(data):
        max_data = np.max(data, keepdims=True) #keepdims保持维度不变
        min_data = np.min(data, keepdims=True)
        # max_data.shape  --->(1, 1)
        return max_data, min_data
    # 对数据进行标准化
    @staticmethod
    def normalized_data(data, max_data, min_data):
        data_base = max_data - min_data
        normalized_data = (data - min_data) / data_base
        return normalized_data
    @staticmethod
    # 反标准化  在评价指标误差以及画图的使用使用
    def recoverd_data(data, max_data, min_data):
        data_base = max_data - min_data
        recoverd_data = data * data_base - min_data
        return recoverd_data
    @staticmethod
    def to_tensor(data):
        return torch.tensor(data, dtype=torch.float)

# 划分数据
divide_days = [25, 5]
time_step = 5
batch_size = 48
train_data = LoadData(data, time_step, divide_days, "train")
test_data = LoadData(data,  time_step, divide_days, "test")
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True, )
test_loader = DataLoader(test_data,batch_size=batch_size, shuffle=False, )

# LSTM构建网络
class LSTM(nn.Module):
    def __init__(self, input_num, hid_num, layers_num, out_num, batch_first=True):
        super().__init__()
        self.l1 = nn.LSTM(
            input_size = input_num,
            hidden_size = hid_num,
            num_layers = layers_num,
            batch_first = batch_first
        )
        self.out = nn.Linear(hid_num, out_num)
    def forward(self, data):
        flow_x = data['flow_x']   # B * T * D
        l_out, (h_n, c_n) = self.l1(flow_x, None)  # None表示第一次 hidden_state是0
#         print(l_out[:, -1, :].shape)
        out = self.out(l_out[:, -1, :])
        return out
        
# 定义模型参数
input_num = 1 # 输入的特征维度
hid_num = 50  # 隐藏层个数
layers_num = 3 # LSTM层个数
out_num = 1
lstm = LSTM(input_num, hid_num, layers_num, out_num)
loss_func = nn.MSELoss()
optimizer = torch.optim.Adam(lstm.parameters())

# 训练模型
lstm.train()
epoch_loss_change = []
for epoch in range(30):
    epoch_loss = 0.0
    start_time = time.time()
    for data_ in train_loader:
        lstm.zero_grad()
        predict = lstm(data_)
        loss = loss_func(predict, data_['flow_y'])
        epoch_loss += loss.item()
        loss.backward()
        optimizer.step()
    epoch_loss_change.append(1000 * epoch_loss / len(train_data))
    end_time = time.time()
    print("Epoch: {:04d}, Loss: {:02.4f}, Time: {:02.2f} mins".format(epoch, 1000 * epoch_loss / len(train_data),
                                                                          (end_time-start_time)/60))
plt.plot(epoch_loss_change)

#评价模型
lstm.eval()
with torch.no_grad(): # 关闭梯度
    total_loss = 0.0
    pre_flow = np.zeros([batch_size, 1]) # [B, D],T=1 # 目标数据的维度,用0填充
    real_flow = np.zeros_like(pre_flow)
    for data_ in test_loader:
        pre_value = lstm(data_)
        loss = loss_func(pre_value, data_['flow_y'])
        total_loss += loss.item()
        # 反归一化
        pre_value = LoadData.recoverd_data(pre_value.detach().numpy(),
                                        test_data.flow_norm[0].squeeze(1), # max_data
                                        test_data.flow_norm[1].squeeze(1), # min_data
                                       )
        target_value = LoadData.recoverd_data(data_['flow_y'].detach().numpy(),
                                    test_data.flow_norm[0].squeeze(1), 
                                    test_data.flow_norm[1].squeeze(1),
                                  )
        pre_flow = np.concatenate([pre_flow, pre_value])
        real_flow = np.concatenate([real_flow, target_value])
    pre_flow  = pre_flow[batch_size: ]
    real_flow  = real_flow[batch_size: ]
#     # 计算误差
mse = mean_squared_error(pre_flow, real_flow)
rmse = math.sqrt(mean_squared_error(pre_flow, real_flow))
mae = mean_absolute_error(pre_flow, real_flow)
print('均方误差---', mse)
print('均方根误差---', rmse)
print('平均绝对误差--', mae)

# 画出预测结果图
font_set = FontProperties(fname=r"C:\Windows\Fonts\simsun.ttc", size=15)    # 中文字体使用宋体,15号
plt.figure(figsize=(15,10))
plt.plot(real_flow, label='Real_Flow', color='r', )
plt.plot(pre_flow, label='Pre_Flow')
plt.xlabel('测试序列', fontproperties=font_set)
plt.ylabel('交通流量/辆', fontproperties=font_set)
plt.legend() 
# 预测储存图片
# plt.savefig('...\Desktop\123.jpg')


``


Logo

为开发者提供学习成长、分享交流、生态实践、资源工具等服务,帮助开发者快速成长。

更多推荐