问题描述

昨天跟着一篇博客BERT 的 PyTorch 实现从头写了一下BERT的代码,因为原代码是在CPU上运行的,于是就想将模型和数据放到GPU上来跑,会快一点。结果,在将输入数据和模型都放到cuda上之后,仍然提示报错:

"RuntimeError: Input, output and indices must be on the current device"

原因与解决方法

通过打印检查了很多次,输入变量和模型参数都在cuda:0上。
查找资料后发现可能是有以下两个地方导致这个问题。

  1. 在模型内部有创建新变量的操作,而这个操作没有to(device)。
  2. 在模型的forward方法中创建了新的网络层/模块。

对于第一个问题,原来的一个内部模块代码为:

class Embedding(nn.Module):
    def __init__(self):
        super(Embedding, self).__init__()
        self.tok_embed = nn.Embedding(vocab_size, d_model)  # token embedding
        self.pos_embed = nn.Embedding(maxlen, d_model)  # position embedding
        self.seg_embed = nn.Embedding(n_segments, d_model)  # segment(token type) embedding
        self.norm = nn.LayerNorm(d_model)

    def forward(self, x, seg):
        seq_len = x.size(1)
        pos = torch.arange(seq_len, dtype=torch.long)
        pos = pos.unsqueeze(0).expand_as(x)  # [seq_len] -> [batch_size, seq_len]
        embedding = self.tok_embed(x) + self.pos_embed(pos) + self.seg_embed(seg)
        return self.norm(embedding)

注意到,这里的forward方法中,

pos = torch.arange(seq_len, dtype=torch.long)

使用torch.arange方法新创建了一个变量而没有对其进行to(device)操作,导致这个变量是在CPU上,因而导致了后续报错。
修改如下:

class Embedding(nn.Module):
    def __init__(self):
        super(Embedding, self).__init__()
        self.tok_embed = nn.Embedding(vocab_size, d_model).to(device)   # token embedding
        self.pos_embed = nn.Embedding(maxlen, d_model).to(device)   # position embedding
        self.seg_embed = nn.Embedding(n_segments, d_model).to(device)   # segment(token type) embedding
        self.norm = nn.LayerNorm(d_model) 

    def forward(self, x, seg):
        seq_len = x.size(1)
        pos = torch.arange(seq_len, dtype=torch.long)
        pos = pos.to(device)
        pos = pos.unsqueeze(0).expand_as(x)  # [seq_len] -> [batch_size, seq_len]
        embedding = self.tok_embed(x) + self.pos_embed(pos) + self.seg_embed(seg)
        return self.norm(embedding)

之后程序不报第一个错误了,然后又报了第二个错误

RuntimeError: Tensor for argument #3 'mat2' is on CPU, but expected it to be on GPU (while checking arguments for addmm)

查找资料发现是因为在模型的forward方法中创建了新的网络层/模块。

错误代码为:

class MultiHeadAttention(nn.Module):
    def __init__(self):
        super(MultiHeadAttention, self).__init__()
        self.W_Q = nn.Linear(d_model, d_k * n_heads)
        self.W_K = nn.Linear(d_model, d_k * n_heads)
        self.W_V = nn.Linear(d_model, d_v * n_heads)
    def forward(self, Q, K, V, attn_mask):
        # q: [batch_size, seq_len, d_model], k: [batch_size, seq_len, d_model], v: [batch_size, seq_len, d_model]
        residual, batch_size = Q, Q.size(0)
        # (B, S, D) -proj-> (B, S, D) -split-> (B, S, H, W) -trans-> (B, H, S, W)
        q_s = self.W_Q(Q).view(batch_size, -1, n_heads, d_k).transpose(1,2)  # q_s: [batch_size, n_heads, seq_len, d_k]
        k_s = self.W_K(K).view(batch_size, -1, n_heads, d_k).transpose(1,2)  # k_s: [batch_size, n_heads, seq_len, d_k]
        v_s = self.W_V(V).view(batch_size, -1, n_heads, d_v).transpose(1,2)  # v_s: [batch_size, n_heads, seq_len, d_v]

        attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1) # attn_mask : [batch_size, n_heads, seq_len, seq_len]

        # context: [batch_size, n_heads, seq_len, d_v], attn: [batch_size, n_heads, seq_len, seq_len]
        context = ScaledDotProductAttention()(q_s, k_s, v_s, attn_mask)
        context = context.transpose(1, 2).contiguous().view(batch_size, -1, n_heads * d_v) # context: [batch_size, seq_len, n_heads, d_v]
        output = nn.Linear(n_heads * d_v, d_model)(context)
        return nn.LayerNorm(d_model)(output + residual) # output: [batch_size, seq_len, d_model]

修改后为

class MultiHeadAttention(nn.Module):
    def __init__(self):
        super(MultiHeadAttention, self).__init__()
        self.W_Q = nn.Linear(d_model, d_k * n_heads).to(device)
        self.W_K = nn.Linear(d_model, d_k * n_heads).to(device)
        self.W_V = nn.Linear(d_model, d_v * n_heads).to(device)
        self.linear = nn.Linear(n_heads * d_v, d_model)
        self.norm = nn.LayerNorm(d_model)
        
    def forward(self, Q, K, V, attn_mask):
        # q: [batch_size, seq_len, d_model], k: [batch_size, seq_len, d_model], v: [batch_size, seq_len, d_model]
        residual, batch_size = Q, Q.size(0)
        # (B, S, D) -proj-> (B, S, D) -split-> (B, S, H, W) -trans-> (B, H, S, W)
        q_s = self.W_Q(Q).view(batch_size, -1, n_heads, d_k).transpose(1,2)  # q_s: [batch_size, n_heads, seq_len, d_k]
        k_s = self.W_K(K).view(batch_size, -1, n_heads, d_k).transpose(1,2)  # k_s: [batch_size, n_heads, seq_len, d_k]
        v_s = self.W_V(V).view(batch_size, -1, n_heads, d_v).transpose(1,2)  # v_s: [batch_size, n_heads, seq_len, d_v]

        attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1) # attn_mask : [batch_size, n_heads, seq_len, seq_len]

        # context: [batch_size, n_heads, seq_len, d_v], attn: [batch_size, n_heads, seq_len, seq_len]
        context = ScaledDotProductAttention()(q_s, k_s, v_s, attn_mask)
        context = context.transpose(1, 2).contiguous().view(batch_size, -1, n_heads * d_v).to(device) # context: [batch_size, seq_len, n_heads, d_v]
        output = self.linear(context)
        return self.norm(output + residual) # output: [batch_size, seq_len, d_model]

之后问题完美解决。

参考

  1. RuntimeError: Tensor for argument #2 ‘weight’ is on CPU, but expected it to be on GPU (while checking arguments for cudnn_batch_norm) , https://discuss.pytorch.org/t/runtimeerror-tensor-for-argument-2-weight-is-on-cpu-but-expected-it-to-be-on-gpu-while-checking-arguments-for-cudnn-batch-norm/55534
Logo

华为开发者空间,是为全球开发者打造的专属开发空间,汇聚了华为优质开发资源及工具,致力于让每一位开发者拥有一台云主机,基于华为根生态开发、创新。

更多推荐