树莓派利用OpenCV的图像跟踪、人脸识别等
作者丨woshigaowei5146 @CSDN编辑丨3D视觉开发者社区目录content准备配置测试程序颜色识别跟踪人脸识别手势识别形状识别条码识别二维码识别故障问题解决module 'cv2' has no attribute 'dnn' ImportError:numpy....
作者丨woshigaowei5146 @CSDN
编辑丨3D视觉开发者社区
目
录
content
准备
配置
测试
程序
颜色识别跟踪
人脸识别
手势识别
形状识别
条码识别
二维码识别
故障问题解决
module 'cv2' has no attribute 'dnn'
ImportError:numpy.core.multiarray failed to import 1121:error:(-2:Unspecified error)FAILED:fs.is_open(). Can't open
准备
树莓派4B
USB免驱摄像头
配置
安装python-opencv,参考:https://blog.csdn.net/weixin_45911959/article/details/122709090
安装numpy,pip3 install-U numpy
安装opencv-python,opencv-contrib-python,参考:https://blog.csdn.net/weixin_57605235/article/details/121512923
测试
图片:
import cv2
a=cv2.imread("/home/pi/2020-06-15-162551_1920x1080_scrot.png")
cv2.imshow("test",a)
cv2.waitKey()
cv2.destroyAllWindows()
视频:
import cv2
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
cv2.imshow('frame', frame)
# 这一步必须有,否则图像无法显示
if cv2.waitKey(1) & 0xFF == ord('q'):
break
#当一切完成时,释放捕获
cap.release()
cv2.destroyAllWindows()
程序
颜色识别跟踪
import sys
import cv2
import math
import time
import threading
import numpy as np
import HiwonderSDK.yaml_handle as yaml_handle
if sys.version_info.major == 2:
print('Please run this program with python3!')
sys.exit(0)
range_rgb = {
'red': (0, 0, 255),
'blue': (255, 0, 0),
'green': (0, 255, 0),
'black': (0, 0, 0),
'white': (255, 255, 255)}
__target_color = ('red', 'green', 'blue')
lab_data = yaml_handle.get_yaml_data(yaml_handle.lab_file_path)
# 找出面积最大的轮廓
# 参数为要比较的轮廓的列表
def getAreaMaxContour(contours):
contour_area_temp = 0
contour_area_max = 0
area_max_contour = None
for c in contours: # 历遍所有轮廓
contour_area_temp = math.fabs(cv2.contourArea(c)) # 计算轮廓面积
if contour_area_temp > contour_area_max:
contour_area_max = contour_area_temp
if contour_area_temp > 300: # 只有在面积大于300时,最大面积的轮廓才是有效的,以过滤干扰
area_max_contour = c
return area_max_contour, contour_area_max # 返回最大的轮廓
detect_color = None
color_list = []
start_pick_up = False
size = (640, 480)
def run(img):
global rect
global detect_color
global start_pick_up
global color_list
img_copy = img.copy()
frame_resize = cv2.resize(img_copy, size, interpolation=cv2.INTER_NEAREST)
frame_gb = cv2.GaussianBlur(frame_resize, (3, 3), 3)
frame_lab = cv2.cvtColor(frame_gb, cv2.COLOR_BGR2LAB) # 将图像转换到LAB空间
color_area_max = None
max_area = 0
areaMaxContour_max = 0
if not start_pick_up:
for i in lab_data:
if i in __target_color:
frame_mask = cv2.inRange(frame_lab,
(lab_data[i]['min'][0],
lab_data[i]['min'][1],
lab_data[i]['min'][2]),
(lab_data[i]['max'][0],
lab_data[i]['max'][1],
lab_data[i]['max'][2])) #对原图像和掩模进行位运算
opened = cv2.morphologyEx(frame_mask, cv2.MORPH_OPEN, np.ones((3, 3), np.uint8)) # 开运算
closed = cv2.morphologyEx(opened, cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8)) # 闭运算
contours = cv2.findContours(closed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[-2] # 找出轮廓
areaMaxContour, area_max = getAreaMaxContour(contours) # 找出最大轮廓
if areaMaxContour is not None:
if area_max > max_area: # 找最大面积
max_area = area_max
color_area_max = i
areaMaxContour_max = areaMaxContour
if max_area > 500: # 有找到最大面积
rect = cv2.minAreaRect(areaMaxContour_max)
box = np.int0(cv2.boxPoints(rect))
y = int((box[1][0]-box[0][0])/2+box[0][0])
x = int((box[2][1]-box[0][1])/2+box[0][1])
print('X:',x,'Y:',y) #打印坐标
cv2.drawContours(img, [box], -1, range_rgb[color_area_max], 2)
if not start_pick_up:
if color_area_max == 'red': # 红色最大
color = 1
elif color_area_max == 'green': # 绿色最大
color = 2
elif color_area_max == 'blue': # 蓝色最大
color = 3
else:
color = 0
color_list.append(color)
if len(color_list) == 3: # 多次判断
# 取平均值
color = int(round(np.mean(np.array(color_list))))
color_list = []
if color == 1:
detect_color = 'red'
elif color == 2:
detect_color = 'green'
elif color == 3:
detect_color = 'blue'
else:
detect_color = 'None'
## cv2.putText(img, "Color: " + detect_color, (10, img.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.65, detect_color, 2)
return img
if __name__ == '__main__':
cap = cv2.VideoCapture(-1) #读取摄像头
__target_color = ('red',)
while True:
ret, img = cap.read()
if ret:
frame = img.copy()
Frame = run(frame)
cv2.imshow('Frame', Frame)
key = cv2.waitKey(1)
if key == 27:
break
else:
time.sleep(0.01)
cv2.destroyAllWindows()
效果:
人脸识别
利用了Caffe训练的人脸数据集。
import sys
import numpy as np
import cv2
import math
import time
import threading
# 人脸检测
if sys.version_info.major == 2:
print('Please run this program with python3!')
sys.exit(0)
# 阈值
conf_threshold = 0.6
# 模型位置
modelFile = "/home/pi/mu_code/models/res10_300x300_ssd_iter_140000_fp16.caffemodel"
configFile = "/home/pi/mu_code/models/deploy.prototxt"
net = cv2.dnn.readNetFromCaffe(configFile, modelFile)
frame_pass = True
x1=x2=y1=y2 = 0
old_time = 0
def run(img):
global old_time
global frame_pass
global x1,x2,y1,y2
if not frame_pass:
frame_pass = True
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2, 8)
x1=x2=y1=y2 = 0
return img
else:
frame_pass = False
img_copy = img.copy()
img_h, img_w = img.shape[:2]
blob = cv2.dnn.blobFromImage(img_copy, 1, (100, 100), [104, 117, 123], False, False)
net.setInput(blob)
detections = net.forward() #计算识别
for i in range(detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > conf_threshold:
#识别到的人了的各个坐标转换会未缩放前的坐标
x1 = int(detections[0, 0, i, 3] * img_w)
y1 = int(detections[0, 0, i, 4] * img_h)
x2 = int(detections[0, 0, i, 5] * img_w)
y2 = int(detections[0, 0, i, 6] * img_h)
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2, 8) #将识别到的人脸框出
X = (x1 + x2)/2
Y = (y1 + y2)/2
print('X:',X,'Y:',Y)
return img
if __name__ == '__main__':
cap = cv2.VideoCapture(-1) #读取摄像头
while True:
ret, img = cap.read()
if ret:
frame = img.copy()
Frame = run(frame)
cv2.imshow('Frame', Frame)
key = cv2.waitKey(1)
if key == 27:
break
else:
time.sleep(0.01)
cv2.destroyAllWindows(
手势识别
import os
import sys
import cv2
import math
import time
import numpy as np
import HiwonderSDK.Misc as Misc
if sys.version_info.major == 2:
print('Please run this program with python3!')
sys.exit(0)
__finger = 0
__t1 = 0
__step = 0
__count = 0
__get_finger = False
# 初始位置
def initMove():
pass
def reset():
global __finger, __t1, __step, __count, __get_finger
__finger = 0
__t1 = 0
__step = 0
__count = 0
__get_finger = False
def init():
reset()
initMove()
class Point(object): # 一个坐标点
x = 0
y = 0
def __init__(self, x=0, y=0):
self.x = x
self.y = y
class Line(object): # 一条线
def __init__(self, p1, p2):
self.p1 = p1
self.p2 = p2
def GetCrossAngle(l1, l2):
'''
求两直线之间的夹角
:param l1:
:param l2:
:return:
'''
arr_0 = np.array([(l1.p2.x - l1.p1.x), (l1.p2.y - l1.p1.y)])
arr_1 = np.array([(l2.p2.x - l2.p1.x), (l2.p2.y - l2.p1.y)])
cos_value = (float(arr_0.dot(arr_1)) / (np.sqrt(arr_0.dot(arr_0))
* np.sqrt(arr_1.dot(arr_1)))) # 注意转成浮点数运算
return np.arccos(cos_value) * (180/np.pi)
def distance(start, end):
"""
计算两点的距离
:param start: 开始点
:param end: 结束点
:return: 返回两点之间的距离
"""
s_x, s_y = start
e_x, e_y = end
x = s_x - e_x
y = s_y - e_y
return math.sqrt((x**2)+(y**2))
def image_process(image, rw, rh): # hsv
'''
# 光线影响,请修改 cb的范围
# 正常黄种人的Cr分量大约在140~160之间
识别肤色
:param image: 图像
:return: 识别后的二值图像
'''
frame_resize = cv2.resize(image, (rw, rh), interpolation=cv2.INTER_CUBIC)
YUV = cv2.cvtColor(frame_resize, cv2.COLOR_BGR2YCR_CB) # 将图片转化为YCrCb
_, Cr, _ = cv2.split(YUV) # 分割YCrCb
Cr = cv2.GaussianBlur(Cr, (5, 5), 0)
_, Cr = cv2.threshold(Cr, 135, 160, cv2.THRESH_BINARY +
cv2.THRESH_OTSU) # OTSU 二值化
# 开运算,去除噪点
open_element = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
opend = cv2.morphologyEx(Cr, cv2.MORPH_OPEN, open_element)
# 腐蚀
kernel = np.ones((3, 3), np.uint8)
erosion = cv2.erode(opend, kernel, iterations=3)
return erosion
def get_defects_far(defects, contours, img):
'''
获取凸包中最远的点
'''
if defects is None and contours is None:
return None
far_list = []
for i in range(defects.shape[0]):
s, e, f, d = defects[i, 0]
start = tuple(contours[s][0])
end = tuple(contours[e][0])
far = tuple(contours[f][0])
# 求两点之间的距离
a = distance(start, end)
b = distance(start, far)
c = distance(end, far)
# 求出手指之间的角度
angle = math.acos((b ** 2 + c ** 2 - a ** 2) /
(2 * b * c)) * 180 / math.pi
# 手指之间的角度一般不会大于100度
# 小于90度
if angle <= 75: # 90:
# cv.circle(img, far, 10, [0, 0, 255], 1)
far_list.append(far)
return far_list
def get_max_coutour(cou, max_area):
'''
找出最大的轮廓
根据面积来计算,找到最大后,判断是否小于最小面积,如果小于侧放弃
:param cou: 轮廓
:return: 返回最大轮廓
'''
max_coutours = 0
r_c = None
if len(cou) < 1:
return None
else:
for c in cou:
# 计算面积
temp_coutours = math.fabs(cv2.contourArea(c))
if temp_coutours > max_coutours:
max_coutours = temp_coutours
cc = c
# 判断所有轮廓中最大的面积
if max_coutours > max_area:
r_c = cc
return r_c
def find_contours(binary, max_area):
'''
CV_RETR_EXTERNAL - 只提取最外层的轮廓
CV_RETR_LIST - 提取所有轮廓,并且放置在 list 中
CV_RETR_CCOMP - 提取所有轮廓,并且将其组织为两层的 hierarchy: 顶层为连通域的外围边界,次层为洞的内层边界。
CV_RETR_TREE - 提取所有轮廓,并且重构嵌套轮廓的全部 hierarchy
method 逼近方法 (对所有节点, 不包括使用内部逼近的 CV_RETR_RUNS).
CV_CHAIN_CODE - Freeman 链码的输出轮廓. 其它方法输出多边形(定点序列).
CV_CHAIN_APPROX_NONE - 将所有点由链码形式翻译(转化)为点序列形式
CV_CHAIN_APPROX_SIMPLE - 压缩水平、垂直和对角分割,即函数只保留末端的象素点;
CV_CHAIN_APPROX_TC89_L1,
CV_CHAIN_APPROX_TC89_KCOS - 应用 Teh-Chin 链逼近算法. CV_LINK_RUNS - 通过连接为 1 的水平碎片使用完全不同的轮廓提取算法
:param binary: 传入的二值图像
:return: 返回最大轮廓
'''
# 找出所有轮廓
contours = cv2.findContours(
binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[-2]
# 返回最大轮廓
return get_max_coutour(contours, max_area)
def get_hand_number(binary_image, contours, rw, rh, rgb_image):
'''
:param binary_image:
:param rgb_image:
:return:
'''
# # 2、找出手指尖的位置
# # 查找轮廓,返回最大轮廓
x = 0
y = 0
coord_list = []
new_hand_list = [] # 获取最终的手指间坐标
if contours is not None:
# 周长 0.035 根据识别情况修改,识别越好,越小
epsilon = 0.020 * cv2.arcLength(contours, True)
# 轮廓相似
approx = cv2.approxPolyDP(contours, epsilon, True)
# cv2.approxPolyDP()的参数2(epsilon)是一个距离值,表示多边形的轮廓接近实际轮廓的程度,值越小,越精确;参数3表示是否闭合
# cv2.polylines(rgb_image, [approx], True, (0, 255, 0), 1)#画多边形
if approx.shape[0] >= 3: # 有三个点以上#多边形最小为三角形,三角形需要三个点
approx_list = []
for j in range(approx.shape[0]): # 将多边形所有的点储存在一个列表里
# cv2.circle(rgb_image, (approx[j][0][0],approx[j][0][1]), 5, [255, 0, 0], -1)
approx_list.append(approx[j][0])
approx_list.append(approx[0][0]) # 在末尾添加第一个点
approx_list.append(approx[1][0]) # 在末尾添加第二个点
for i in range(1, len(approx_list) - 1):
p1 = Point(approx_list[i - 1][0],
approx_list[i - 1][1]) # 声明一个点
p2 = Point(approx_list[i][0], approx_list[i][1])
p3 = Point(approx_list[i + 1][0], approx_list[i + 1][1])
line1 = Line(p1, p2) # 声明一条直线
line2 = Line(p2, p3)
angle = GetCrossAngle(line1, line2) # 获取两条直线的夹角
angle = 180 - angle #
# print angle
if angle < 42: # 求出两线相交的角度,并小于37度的
#cv2.circle(rgb_image, tuple(approx_list[i]), 5, [255, 0, 0], -1)
coord_list.append(tuple(approx_list[i]))
##############################################################################
# 去除手指间的点
# 1、获取凸包缺陷点,最远点点
#cv2.drawContours(rgb_image, contours, -1, (255, 0, 0), 1)
try:
hull = cv2.convexHull(contours, returnPoints=False)
# 找凸包缺陷点 。返回的数据, 【起点,终点, 最远的点, 到最远点的近似距离】
defects = cv2.convexityDefects(contours, hull)
# 返回手指间的点
hand_coord = get_defects_far(defects, contours, rgb_image)
except:
return rgb_image, 0
# 2、从coord_list 去除最远点
alike_flag = False
if len(coord_list) > 0:
for l in range(len(coord_list)):
for k in range(len(hand_coord)):
if (-10 <= coord_list[l][0] - hand_coord[k][0] <= 10 and
-10 <= coord_list[l][1] - hand_coord[k][1] <= 10): # 最比较X,Y轴, 相近的去除
alike_flag = True
break #
if alike_flag is False:
new_hand_list.append(coord_list[l])
alike_flag = False
# 获取指尖的坐标列表并显示
for i in new_hand_list:
j = list(tuple(i))
j[0] = int(Misc.map(j[0], 0, rw, 0, 640))
j[1] = int(Misc.map(j[1], 0, rh, 0, 480))
cv2.circle(rgb_image, (j[0], j[1]), 20, [0, 255, 255], -1)
fingers = len(new_hand_list)
return rgb_image, fingers
def run(img, debug=False):
global __act_map, __get_finger
global __step, __count, __finger
binary = image_process(img, 320, 240)
contours = find_contours(binary, 3000)
img, finger = get_hand_number(binary, contours, 320, 240, img)
if not __get_finger:
if finger == __finger:
__count += 1
else:
__count = 0
__finger = finger
cv2.putText(img, "Finger(s):%d" % __finger, (50, 480 - 30),
cv2.FONT_HERSHEY_SIMPLEX, 1.2, (0, 255, 255), 2)#将识别到的手指个数写在图片上
return img
if __name__ == '__main__':
init()
cap = cv2.VideoCapture(-1) #读取摄像头
while True:
ret, img = cap.read()
if ret:
frame = img.copy()
Frame = run(frame)
frame_resize = cv2.resize(Frame, (320, 240))
cv2.imshow('frame', frame_resize)
key = cv2.waitKey(1)
if key == 27:
break
else:
time.sleep(0.01)
cv2.destroyAllWindows()
形状识别
import sys
import cv2
import math
import time
import threading
import numpy as np
import HiwonderSDK.tm1640 as tm
import RPi.GPIO as GPIO
GPIO.setwarnings(False)
GPIO.setmode(GPIO.BCM)
color_range = {
'red': [(0, 101, 177), (255, 255, 255)],
'green': [(47, 0, 135), (255, 119, 255)],
'blue': [(0, 0, 0), (255, 255, 115)],
'black': [(0, 0, 0), (41, 255, 136)],
'white': [(193, 0, 0), (255, 250, 255)],
}
if sys.version_info.major == 2:
print('Please run this program with python3!')
sys.exit(0)
range_rgb = {
'red': (0, 0, 255),
'blue': (255, 0, 0),
'green': (0, 255, 0),
'black': (0, 0, 0),
'white': (255, 255, 255),
}
# 找出面积最大的轮廓
# 参数为要比较的轮廓的列表
def getAreaMaxContour(contours):
contour_area_temp = 0
contour_area_max = 0
area_max_contour = None
for c in contours: # 历遍所有轮廓
contour_area_temp = math.fabs(cv2.contourArea(c)) # 计算轮廓面积
if contour_area_temp > contour_area_max:
contour_area_max = contour_area_temp
if contour_area_temp > 50: # 只有在面积大于50时,最大面积的轮廓才是有效的,以过滤干扰
area_max_contour = c
return area_max_contour, contour_area_max # 返回最大的轮廓
shape_length = 0
def move():
global shape_length
while True:
if shape_length == 3:
print('三角形')
## 显示'三角形'
tm.display_buf = (0x80, 0xc0, 0xa0, 0x90, 0x88, 0x84, 0x82, 0x81,
0x81, 0x82, 0x84,0x88, 0x90, 0xa0, 0xc0, 0x80)
tm.update_display()
elif shape_length == 4:
print('矩形')
## 显示'矩形'
tm.display_buf = (0x00, 0x00, 0x00, 0x00, 0xff, 0x81, 0x81, 0x81,
0x81, 0x81, 0x81,0xff, 0x00, 0x00, 0x00, 0x00)
tm.update_display()
elif shape_length >= 6:
print('圆')
## 显示'圆形'
tm.display_buf = (0x00, 0x00, 0x00, 0x00, 0x1c, 0x22, 0x41, 0x41,
0x41, 0x22, 0x1c,0x00, 0x00, 0x00, 0x00, 0x00)
tm.update_display()
time.sleep(0.01)
# 运行子线程
th = threading.Thread(target=move)
th.setDaemon(True)
th.start()
shape_list = []
action_finish = True
if __name__ == '__main__':
cap = cv2.VideoCapture(-1)
while True:
ret,img = cap.read()
if ret:
img_copy = img.copy()
img_h, img_w = img.shape[:2]
frame_gb = cv2.GaussianBlur(img_copy, (3, 3), 3)
frame_lab = cv2.cvtColor(frame_gb, cv2.COLOR_BGR2LAB) # 将图像转换到LAB空间
max_area = 0
color_area_max = None
areaMaxContour_max = 0
if action_finish:
for i in color_range:
if i != 'white':
frame_mask = cv2.inRange(frame_lab, color_range[i][0], color_range[i][1]) #对原图像和掩模进行位运算
opened = cv2.morphologyEx(frame_mask, cv2.MORPH_OPEN, np.ones((6,6),np.uint8)) #开运算
closed = cv2.morphologyEx(opened, cv2.MORPH_CLOSE, np.ones((6,6),np.uint8)) #闭运算
contours = cv2.findContours(closed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[-2] #找出轮廓
areaMaxContour, area_max = getAreaMaxContour(contours) #找出最大轮廓
if areaMaxContour is not None:
if area_max > max_area:#找最大面积
max_area = area_max
color_area_max = i
areaMaxContour_max = areaMaxContour
if max_area > 200:
cv2.drawContours(img, areaMaxContour_max, -1, (0, 0, 255), 2)
# 识别形状
# 周长 0.035 根据识别情况修改,识别越好,越小
epsilon = 0.035 * cv2.arcLength(areaMaxContour_max, True)
# 轮廓相似
approx = cv2.approxPolyDP(areaMaxContour_max, epsilon, True)
shape_list.append(len(approx))
if len(shape_list) == 30:
shape_length = int(round(np.mean(shape_list)))
shape_list = []
print(shape_length)
frame_resize = cv2.resize(img, (320, 240))
cv2.imshow('frame', frame_resize)
key = cv2.waitKey(1)
if key == 27:
break
else:
time.sleep(0.01)
my_camera.camera_close()
cv2.destroyAllWindows()
approxPolyDP()函数用于将一个连续光滑曲线折线化。
以代码"approx=cv2.approxPolyDP(areaMaxContour_max,epsilon,True)”为例,括号内的参数含义如下:
第一个参数“areaMaxContour_max”是输入的形状轮廓;
第二个参数“epsilon”是距离值,表示多边形的轮廓接近实际轮廓的程度,值越小,越精确;
第三个参数“True”表示轮廓为闭合曲线。
cv2.approxPolyDP()函数的输出为近似多边形的顶点坐标,根据顶点的数量判断形状。
条码识别
首先安装pyzbar,pip3 install pyzbar
import cv2
import sys
from pyzbar import pyzbar
if sys.version_info.major == 2:
print('Please run this program with python3!')
sys.exit(0)
def run(image):
# 找到图像中的条形码并解码每个条形码
barcodes = pyzbar.decode(image)
# 循环检测到的条形码
for barcode in barcodes:
# 提取条形码的边界框位置
(x, y, w, h) = barcode.rect
# 绘出图像上条形码的边框
cv2.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), 2)
barcodeData = barcode.data.decode("utf-8")
barcodeType = barcode.type
# 在图像上绘制条形码数据和条形码类型
text = "{} ({})".format(barcodeData, barcodeType)
cv2.putText(image, text, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
return image
if __name__ == '__main__':
cap = cv2.VideoCapture(-1) #读取摄像头
while True:
ret, img = cap.read()
if ret:
frame = img.copy()
Frame = run(frame)
cv2.imshow('Frame', Frame)
key = cv2.waitKey(1)
if key == 27:
break
else:
time.sleep(0.01)
cv2.destroyAllWindows()
二维码识别
安装apriltag,发现安装失败。还是老办法下载到本地以后安装。
在https://www.piwheels.org/simple/apriltag/,我下载了apriltag-0.0.16-cp37-cp37mlinux_armv7l.whl。
使用FileZilla传输到树莓派,打开whl文件所在的树莓派目录,安装whl文件,显示成功安装。
cd /home/pi/Downloads
sudo pip3 install apriltag-0.0.16-cp37-cp37m-linux_armv7l.whl
import sys
import cv2
import math
import time
import threading
import numpy as np
import apriltag
#apriltag检测
if sys.version_info.major == 2:
print('Please run this program with python3!')
sys.exit(0)
object_center_x = 0.0
object_center_y = 0.0
# 检测apriltag
detector = apriltag.Detector(searchpath=apriltag._get_demo_searchpath())
def apriltagDetect(img):
global object_center_x, object_center_y
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
detections = detector.detect(gray, return_image=False)
if len(detections) != 0:
for detection in detections:
corners = np.rint(detection.corners) # 获取四个角点
cv2.drawContours(img, [np.array(corners, np.int)], -1, (0, 255, 255), 2)
tag_family = str(detection.tag_family, encoding='utf-8') # 获取tag_family
tag_id = int(detection.tag_id) # 获取tag_id
object_center_x, object_center_y = int(detection.center[0]), int(detection.center[1]) # 中心点
object_angle = int(math.degrees(math.atan2(corners[0][1] - corners[1][1], corners[0][0] - corners[1][0]))) # 计算旋转角
return tag_family, tag_id
return None, None
def run(img):
global state
global tag_id
global action_finish
global object_center_x, object_center_y
img_h, img_w = img.shape[:2]
tag_family, tag_id = apriltagDetect(img) # apriltag检测
if tag_id is not None:
print('X:',object_center_x,'Y:',object_center_y)
cv2.putText(img, "tag_id: " + str(tag_id), (10, img.shape[0] - 30), cv2.FONT_HERSHEY_SIMPLEX, 0.65, [0, 255, 255], 2)
cv2.putText(img, "tag_family: " + tag_family, (10, img.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.65, [0, 255, 255], 2)
else:
cv2.putText(img, "tag_id: None", (10, img.shape[0] - 30), cv2.FONT_HERSHEY_SIMPLEX, 0.65, [0, 255, 255], 2)
cv2.putText(img, "tag_family: None", (10, img.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.65, [0, 255, 255], 2)
return img
if __name__ == '__main__':
cap = cv2.VideoCapture(-1) #读取摄像头
while True:
ret, img = cap.read()
if ret:
frame = img.copy()
Frame = run(frame)
cv2.imshow('Frame', Frame)
key = cv2.waitKey(1)
if key == 27:
break
else:
time.sleep(0.01)
cv2.destroyAllWindows()
故障问题解决
module ‘cv2’ has no attribute ‘dnn’
尝试用一下指令都有问题,一直在报错,或者显示无法识别 python-opencv,更换镜像也没用:
sudo apt install python-opencv 或 sudo apt install python3-opencv
sudo apt-get install opencv-python
sudo apt-get install opencv-contrib-python
pip install opencv-contrib-python
pip install opencv-python
最后,通过下载本地文件的方式安装成功。
首先习惯更新树莓派系统和文件
sudo apt-get update
sudo apt-get upgrade
若下载速度太慢可以考虑换源。
1) 使用“ sudo nano /etc/apt/sources.list” 命令编辑 sources.list 文件,注释原文件
所有内容,并追加以下内容:
deb http://mirrors.aliyun.com/raspbian/raspbian/ buster main contrib non-free rpi
deb-src http://mirrors.aliyun.com/raspbian/raspbian/ buster main contrib non-free rpi
使用 Ctrl+O 快捷键保存文件,Ctrl+X 退出文件。
2)使用 “sudo nano /etc/apt/sources.list.d/raspi.list” 命令编辑 raspi.list 文件,注释
原文件所有内容,并追加以下内容:
deb http://mirrors.tuna.tsinghua.edu.cn/raspbian/raspbian/ buster main
deb-src http://mirrors.tuna.tsinghua.edu.cn/raspbian/raspbian/ buster main
使用 Ctrl+O 快捷键保存文件,Ctrl+X 退出文件。
3)执行“sudo apt-get update” 命令。
4) 为加速 Python pip 安装速度,特更改 Python 软件源,操作方法:打开树莓派命令行,
输入下面命令:
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
pip install pip -U
5) 最后输入指令“sudo reboot”,重新启动树莓派即可。
下载whl文件并传到树莓派上,在电脑上打开 https://www.piwheels.org/simple/opencv-python/
下载与自己python版本相对的whl文件,我下载的是opencv_python-3.4.10.37-cp37-cp37m-linux_armv7l.whl
cp37表示python的版本,armv7表示处理器的架构,树莓派4B选择armv7
将其使用FileZilla传输到树莓派,打开whl文件所在的树莓派目录,安装whl文件,显示成功安装opencv-python
cd /home/pi/Downloads
sudo pip3 install opencv_python-3.4.10.37-cp37-cp37m-linux_armv7l.whl
参考:https://blog.csdn.net/weixin_57605235/article/details/121512923
ImportError:numpy.core.multiarray failed to import
先卸载低版本的numpy,再安装新版本的numpy,即
1. pip uninstall numpy
2. pip install -U numpy
来自https://blog.csdn.net/qq_25603827/article/details/107824977
无效。
pip install numpy --upgrade --force
来自http://www.manongjc.com/article/38668.html
无效。
查看本地numpy版本:
pip show numpy
而我们在安装opencv-python时,其对应numpy版本为:
所以对numpy进行版本降级处理即可:
pip install -U numpy==1.14.5 -i https://pypi.mirrors.ustc.edu.cn/simple/
来自https://zhuanlan.zhihu.com/p/280702247
无效。
最后,用pip3 install-Unumpy成功。所以用python3的最好还是用pip3。
网上有很多尝试方法,有升级版本的,有降级版本的,各种诡异的现象层出不穷,说法不一,参考:
https://blog.csdn.net/Robin_Pi/article/details/120544691 https://zhuanlan.zhihu.com/p/29026597
1121:error:(-2:Unspecified error) FAILED: fs.is_open(). Can’t open
找了半天发现多了个点在开头。
本文仅做学术分享,如有侵权,请联系删文。
3D视觉工坊精品课程官网:3dcver.com
2.面向自动驾驶领域的3D点云目标检测全栈学习路线!(单模态+多模态/数据+代码)
3.彻底搞透视觉三维重建:原理剖析、代码讲解、及优化改进
4.国内首个面向工业级实战的点云处理课程
5.激光-视觉-IMU-GPS融合SLAM算法梳理和代码讲解
6.彻底搞懂视觉-惯性SLAM:基于VINS-Fusion正式开课啦
7.彻底搞懂基于LOAM框架的3D激光SLAM: 源码剖析到算法优化
8.彻底剖析室内、室外激光SLAM关键算法原理、代码和实战(cartographer+LOAM +LIO-SAM)
重磅!3DCVer-学术论文写作投稿 交流群已成立
扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。
同时也可申请加入我们的细分方向交流群,目前主要有3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流、ORB-SLAM系列源码交流、深度估计等微信群。
一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。
▲长按加微信群或投稿
▲长按关注公众号
3D视觉从入门到精通知识星球:针对3D视觉领域的视频课程(三维重建系列、三维点云系列、结构光系列、手眼标定、相机标定、激光/视觉SLAM、自动驾驶等)、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答五个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近4000星球成员为创造更好的AI世界共同进步,知识星球入口:
学习3D视觉核心技术,扫描查看介绍,3天内无条件退款
圈里有高质量教程资料、答疑解惑、助你高效解决问题
觉得有用,麻烦给个赞和在看~
更多推荐
所有评论(0)