python实现PCA降维及可视化
python对数据清洗以及数据编码(具体实现方式可查看前两篇文章)后的变量进行PCA降维,并进行可视化展示。
·
实现功能:
python对数据清洗以及数据编码(具体实现方式可查看前两篇文章)后的变量进行PCA降维,并进行可视化展示。
实现代码:
# 导入需要的库 import numpy as np import pandas as pd import seaborn as sns from sklearn import preprocessing import matplotlib.pyplot as plt from sklearn.decomposition import PCA def Read_data(file): dt = pd.read_csv(file) dt.columns = ['age', 'sex', 'chest_pain_type', 'resting_blood_pressure', 'cholesterol', 'fasting_blood_sugar', 'rest_ecg', 'max_heart_rate_achieved','exercise_induced_angina', 'st_depression', 'st_slope', 'num_major_vessels', 'thalassemia', 'target'] data =dt pd.set_option('display.max_rows', None) pd.set_option('display.max_columns', None) pd.set_option('display.width', None) pd.set_option('display.unicode.ambiguous_as_wide', True) pd.set_option('display.unicode.east_asian_width', True) print(data.head()) return data def data_clean(data): # 数据清洗 # 重复值处理 print('存在' if any(data.duplicated()) else '不存在', '重复观测值') data.drop_duplicates() # 缺失值处理 # print(data.isnull()) # print(data.isnull().sum()) #检测每列中缺失值的数量 # print(data.isnull().T.sum()) #检测每行缺失值的数量 print('不存在' if any(data.isnull()) else '存在', '缺失值') data.dropna() # 直接删除记录 data.fillna(method='ffill') # 前向填充 data.fillna(method='bfill') # 后向填充 data.fillna(value=2) # 值填充 data.fillna(value={'resting_blood_pressure': data['resting_blood_pressure'].mean()}) # 统计值填充 # 异常值处理 data1 = data['resting_blood_pressure'] # 标准差监测 xmean = data1.mean() xstd = data1.std() print('存在' if any(data1 > xmean + 2 * xstd) else '不存在', '上限异常值') print('存在' if any(data1 < xmean - 2 * xstd) else '不存在', '下限异常值') # 箱线图监测 q1 = data1.quantile(0.25) q3 = data1.quantile(0.75) up = q3 + 1.5 * (q3 - q1) dw = q1 - 1.5 * (q3 - q1) print('存在' if any(data1 > up) else '不存在', '上限异常值') print('存在' if any(data1 < dw) else '不存在', '下限异常值') data1[data1 > up] = data1[data1 < up].max() data1[data1 < dw] = data1[data1 > dw].min() # print(data1) return data def data_encoding(data): #========================数据编码=========================== data = data[["age", 'sex', "chest_pain_type", "resting_blood_pressure", "cholesterol", "fasting_blood_sugar", "rest_ecg","max_heart_rate_achieved", "exercise_induced_angina", "st_depression", "st_slope", "num_major_vessels","thalassemia","target"]] Discretefeature=['sex',"chest_pain_type", "fasting_blood_sugar", "rest_ecg", "exercise_induced_angina", "st_slope", "thalassemia"] Continuousfeature=["age", "resting_blood_pressure", "cholesterol", "max_heart_rate_achieved","st_depression","num_major_vessels"] df = pd.get_dummies(data,columns=Discretefeature) print(df.head()) df[Continuousfeature]=(df[Continuousfeature]-df[Continuousfeature].mean())/(df[Continuousfeature].std()) print(df.head()) df["target"]=data[["target"]] print(df) return df def PCA_analysis(data): # X提取变量特征;Y提取目标变量 X = data.drop('target', axis=1) y = data['target'] pca = PCA(n_components=2) reduced_x = pca.fit_transform(X) # 得到了pca降到2维的数据 print(reduced_x.shape) print(reduced_x) yes_x, yes_y = [], [] no_x, no_y = [], [] for i in range(len(reduced_x)): if y[i] == 1: yes_x.append(reduced_x[i][0]) yes_y.append(reduced_x[i][1]) elif y[i] == 0: no_x.append(reduced_x[i][0]) no_y.append(reduced_x[i][1]) font = {'family': 'Times New Roman', 'size': 16, } sns.set(font_scale=1.2) plt.rc('font',family='Times New Roman') plt.scatter(yes_x, yes_y, c='r', marker='o',label='Yes') plt.scatter(no_x, no_y, c='b', marker='x',label='No') plt.title("PCA analysis") # 显示标题 plt.legend() plt.show() print(pca.explained_variance_ratio_) # 输出贡献率 if __name__=="__main__": data1=Read_data("F:\数据杂坛\\0504\heartdisease\Heart-Disease-Data-Set-main\\UCI Heart Disease Dataset.csv") data1=data_clean(data1) data2=data_encoding(data1) PCA_analysis(data2)
实现效果:
喜欢记得点赞,在看,收藏,
关注V订阅号:数据杂坛,获取完整代码和效果,将持续更新!
更多推荐
已为社区贡献7条内容
所有评论(0)