错误解决:ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.

例:

data = {'Name': ['Microsoft', 'Google', 'huawei','Apple', 'Andriod'],'Shares': [63, 50, 71, 62, 65]}
data

我们的数据展示如下:

{'Name': ['Microsoft', 'Google', 'huawei', 'Apple', 'Andriod'],
 'Shares': [63, 50, 71, 62, 65]}

我最开始的目的是要找到'Shares'的取值范围在【60,75】之间的数据:

df = pd.DataFrame(data)
df[df['Shares']>60 & df['Shares']<75]

然后报错:ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().

我们看一下完整的错误说明:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Input In [34], in <cell line: 1>()
----> 1 df[df['Shares']>60 & df['Shares']<75]

File F:\anaconda\envs\sklearn-env\lib\site-packages\pandas\core\generic.py:1442, in NDFrame.__nonzero__(self)
   1440 @final
   1441 def __nonzero__(self):
-> 1442     raise ValueError(
   1443         f"The truth value of a {type(self).__name__} is ambiguous. "
   1444         "Use a.empty, a.bool(), a.item(), a.any() or a.all()."
   1445     )

ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().

问题思考

如果不使用圆括号()对条件进行分组,Python将根据运算符优先级计算表达式,这可能会给出运算符&和~的意外结果。

df[df['Shares']>60 & df['Shares']<75]可能会理解成df['Shares']>(60 & df['Shares'])<75

问题解决

为条件关系添加括号即可!

df[(df['Shares']>60) & (df['Shares']<75)]

Logo

华为开发者空间,是为全球开发者打造的专属开发空间,汇聚了华为优质开发资源及工具,致力于让每一位开发者拥有一台云主机,基于华为根生态开发、创新。

更多推荐