#1. 导入相关包

import numpy as np #导入numpy科学计算
import pandas as pd #导入pandas数据分析包
from pandas import Series, DataFrame    #Series是类似于一维数组的对象
import matplotlib.pyplot as plt #导入绘图的包
import sklearn.datasets as datasets #直接从sklearn的datasets API中导入数据集,例如scikit-learn 内置有一些小型标准数据集,不需要从某个外部网站下载任何文件,用datasets.load_xx()加载。

from sklearn.model_selection import train_test_split  # train_test_split是交叉验证中常用的函数,功能是从样本中随机的按比例选取train data和test data。

from sklearn.metrics import r2_score  #导入评判标准,计算预测值和真实值的拟合程度
# 机器算法模型
 

{'data': array([[6.3200e-03, 1.8000e+01, 2.3100e+00, ..., 1.5300e+01, 3.9690e+02,
         4.9800e+00],
        [2.7310e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9690e+02,
         9.1400e+00],
        [2.7290e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9283e+02,
         4.0300e+00],
        ...,
        [6.0760e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
         5.6400e+00],
        [1.0959e-01, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9345e+02,
         6.4800e+00],
        [4.7410e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
         7.8800e+00]]),
 'target': array([24. , 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, 18.9, 15. ,
        18.9, 21.7, 20.4, 18.2, 19.9, 23.1, 17.5, 20.2, 18.2, 13.6, 19.6,
        15.2, 14.5, 15.6, 13.9, 16.6, 14.8, 18.4, 21. , 12.7, 14.5, 13.2,
        13.1, 13.5, 18.9, 20. , 21. , 24.7, 30.8, 34.9, 26.6, 25.3, 24.7,
        21.2, 19.3, 20. , 16.6, 14.4, 19.4, 19.7, 20.5, 25. , 23.4, 18.9,
        35.4, 24.7, 31.6, 23.3, 19.6, 18.7, 16. , 22.2, 25. , 33. , 23.5,
        19.4, 22. , 17.4, 20.9, 24.2, 21.7, 22.8, 23.4, 24.1, 21.4, 20. ,
        20.8, 21.2, 20.3, 28. , 23.9, 24.8, 22.9, 23.9, 26.6, 22.5, 22.2,
        23.6, 28.7, 22.6, 22. , 22.9, 25. , 20.6, 28.4, 21.4, 38.7, 43.8,
        33.2, 27.5, 26.5, 18.6, 19.3, 20.1, 19.5, 19.5, 20.4, 19.8, 19.4,
        21.7, 22.8, 18.8, 18.7, 18.5, 18.3, 21.2, 19.2, 20.4, 19.3, 22. ,
        20.3, 20.5, 17.3, 18.8, 21.4, 15.7, 16.2, 18. , 14.3, 19.2, 19.6,
        23. , 18.4, 15.6, 18.1, 17.4, 17.1, 13.3, 17.8, 14. , 14.4, 13.4,
        15.6, 11.8, 13.8, 15.6, 14.6, 17.8, 15.4, 21.5, 19.6, 15.3, 19.4,
        17. , 15.6, 13.1, 41.3, 24.3, 23.3, 27. , 50. , 50. , 50. , 22.7,
        25. , 50. , 23.8, 23.8, 22.3, 17.4, 19.1, 23.1, 23.6, 22.6, 29.4,
        23.2, 24.6, 29.9, 37.2, 39.8, 36.2, 37.9, 32.5, 26.4, 29.6, 50. ,
        32. , 29.8, 34.9, 37. , 30.5, 36.4, 31.1, 29.1, 50. , 33.3, 30.3,
        34.6, 34.9, 32.9, 24.1, 42.3, 48.5, 50. , 22.6, 24.4, 22.5, 24.4,
        20. , 21.7, 19.3, 22.4, 28.1, 23.7, 25. , 23.3, 28.7, 21.5, 23. ,
        26.7, 21.7, 27.5, 30.1, 44.8, 50. , 37.6, 31.6, 46.7, 31.5, 24.3,
        31.7, 41.7, 48.3, 29. , 24. , 25.1, 31.5, 23.7, 23.3, 22. , 20.1,
        22.2, 23.7, 17.6, 18.5, 24.3, 20.5, 24.5, 26.2, 24.4, 24.8, 29.6,
        42.8, 21.9, 20.9, 44. , 50. , 36. , 30.1, 33.8, 43.1, 48.8, 31. ,
        36.5, 22.8, 30.7, 50. , 43.5, 20.7, 21.1, 25.2, 24.4, 35.2, 32.4,
        32. , 33.2, 33.1, 29.1, 35.1, 45.4, 35.4, 46. , 50. , 32.2, 22. ,
        20.1, 23.2, 22.3, 24.8, 28.5, 37.3, 27.9, 23.9, 21.7, 28.6, 27.1,
        20.3, 22.5, 29. , 24.8, 22. , 26.4, 33.1, 36.1, 28.4, 33.4, 28.2,
        22.8, 20.3, 16.1, 22.1, 19.4, 21.6, 23.8, 16.2, 17.8, 19.8, 23.1,
        21. , 23.8, 23.1, 20.4, 18.5, 25. , 24.6, 23. , 22.2, 19.3, 22.6,
        19.8, 17.1, 19.4, 22.2, 20.7, 21.1, 19.5, 18.5, 20.6, 19. , 18.7,
        32.7, 16.5, 23.9, 31.2, 17.5, 17.2, 23.1, 24.5, 26.6, 22.9, 24.1,
        18.6, 30.1, 18.2, 20.6, 17.8, 21.7, 22.7, 22.6, 25. , 19.9, 20.8,
        16.8, 21.9, 27.5, 21.9, 23.1, 50. , 50. , 50. , 50. , 50. , 13.8,
        13.8, 15. , 13.9, 13.3, 13.1, 10.2, 10.4, 10.9, 11.3, 12.3,  8.8,
         7.2, 10.5,  7.4, 10.2, 11.5, 15.1, 23.2,  9.7, 13.8, 12.7, 13.1,
        12.5,  8.5,  5. ,  6.3,  5.6,  7.2, 12.1,  8.3,  8.5,  5. , 11.9,
        27.9, 17.2, 27.5, 15. , 17.2, 17.9, 16.3,  7. ,  7.2,  7.5, 10.4,
         8.8,  8.4, 16.7, 14.2, 20.8, 13.4, 11.7,  8.3, 10.2, 10.9, 11. ,
         9.5, 14.5, 14.1, 16.1, 14.3, 11.7, 13.4,  9.6,  8.7,  8.4, 12.8,
        10.5, 17.1, 18.4, 15.4, 10.8, 11.8, 14.9, 12.6, 14.1, 13. , 13.4,
        15.2, 16.1, 17.8, 14.9, 14.1, 12.7, 13.5, 14.9, 20. , 16.4, 17.7,
        19.5, 20.2, 21.4, 19.9, 19. , 19.1, 19.1, 20.1, 19.9, 19.6, 23.2,
        29.8, 13.8, 13.3, 16.7, 12. , 14.6, 21.4, 23. , 23.7, 25. , 21.8,
        20.6, 21.2, 19.1, 20.6, 15.2,  7. ,  8.1, 13.6, 20.1, 21.8, 24.5,
        23.1, 19.7, 18.3, 21.2, 17.5, 16.8, 22.4, 20.6, 23.9, 22. , 11.9]),
 'feature_names': array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD',
        'TAX', 'PTRATIO', 'B', 'LSTAT'], dtype='<U7'),
 'DESCR': ".. _boston_dataset:\n\nBoston house prices dataset\n---------------------------\n\n**Data Set Characteristics:**  \n\n    :Number of Instances: 506 \n\n    :Number of Attributes: 13 numeric/categorical predictive. Median Value (attribute 14) is usually the target.\n\n    :Attribute Information (in order):\n        - CRIM     per capita crime rate by town\n        - ZN       proportion of residential land zoned for lots over 25,000 sq.ft.\n        - INDUS    proportion of non-retail business acres per town\n        - CHAS     Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)\n        - NOX      nitric oxides concentration (parts per 10 million)\n        - RM       average number of rooms per dwelling\n        - AGE      proportion of owner-occupied units built prior to 1940\n        - DIS      weighted distances to five Boston employment centres\n        - RAD      index of accessibility to radial highways\n        - TAX      full-value property-tax rate per $10,000\n        - PTRATIO  pupil-teacher ratio by town\n        - B        1000(Bk - 0.63)^2 where Bk is the proportion of black people by town\n        - LSTAT    % lower status of the population\n        - MEDV     Median value of owner-occupied homes in $1000's\n\n    :Missing Attribute Values: None\n\n    :Creator: Harrison, D. and Rubinfeld, D.L.\n\nThis is a copy of UCI ML housing dataset.\nhttps://archive.ics.uci.edu/ml/machine-learning-databases/housing/\n\n\nThis dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.\n\nThe Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic\nprices and the demand for clean air', J. Environ. Economics & Management,\nvol.5, 81-102, 1978.   Used in Belsley, Kuh & Welsch, 'Regression diagnostics\n...', Wiley, 1980.   N.B. Various transformations are used in the table on\npages 244-261 of the latter.\n\nThe Boston house-price data has been used in many machine learning papers that address regression\nproblems.   \n     \n.. topic:: References\n\n   - Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.\n   - Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.\n",
 'filename': 'boston_house_prices.csv',
 'data_module': 'sklearn.datasets.data'}

 
#2. 读取数据

boston = datasets.load_boston()
data_name = boston['feature_names']
data_1 = boston['data'][:5]
train = boston.data # 样本
# print(train.shape[0])                #输出为506
target = boston.target # 标签
# print(target.shape[0])                #输出为506
# 切割数据样本集合测试集
X_train, x_test, y_train, y_true = train_test_split(train, target, test_size=0.2) 
#参数:所要划分的样本特征集;所要划分的样本结果;
# 20%测试集;80%训练集

#波士顿房价预测----Lasso
from sklearn.linear_model import Lasso # 线性回归算法Lasso回归,可用作特征筛选
# 模型训练
lasso = Lasso() #实例化lasso模型
lasso.fit(X_train, y_train)  # 模型训练
# 预测数据
y_pre_lasso = lasso.predict(x_test)    

#R^2 score,即决定系数,反映因变量的全部变异能通过回归关系被自变量解释的比例。计算公式:R^2=1-\frac{SSE}{SST}
lasso_score = r2_score(y_true, y_pre_lasso)

print('w = ', lasso.coef_) # w值
print('b = ', lasso.intercept_) # b值
print("训练集得分:{:.2f}".format(lasso.score(X_train, y_train)))
print("测试集得分:{:.2f}".format(lasso.score(x_test, y_true)))
# 绘图
# Lasso
plt.plot(y_true, label='true')
plt.plot(y_pre_lasso,'r:', label='lasso')
plt.legend()  #使用plt.legend()使上述plt.plot()代码产生效果
plt.show()
# plt.savefig('F:/新桌面/pred_GT.jpg')

#波士顿房价预测----Ridge Regression

#1.模型导入
#注意:其他包的导入如Lasso回归
from sklearn.linear_model import Ridge # 线性回归算法Ridge回归,岭回归
ridge = Ridge(alpha=1,max_iter=1000) # 模型实例化
#alpha:正则化力度,必须是一个正浮点数。正则化提升了问题的条件,减少了估计器的方差。
#max_iter:共轭梯度求解器的最大迭代次数。

ridge.fit(X_train, y_train) # 模型训练
# 模型预测
y_pre_ridge = ridge.predict(x_test)

# print('预测结果:', y_pre_ridge)
print('w = ', ridge.coef_) # w值
print('b = ', ridge.intercept_) # b值
print("训练集得分:{:.2f}".format(ridge.score(X_train, y_train)))
print("测试集得分:{:.2f}".format(ridge.score(x_test, y_true)))

ridge_score = r2_score(y_true, y_pre_ridge)   #决定系数,反映因变量的全部变异能通过回归关系被自变量解释的比例
#绘图
plt.plot(y_true, label='true')
plt.plot(y_pre_ridge,'r:', label='ridge')
plt.legend()
plt.show()
# plt.savefig(''F:/新桌面/回归曲线.jpg')

# 波士顿房价预测----Multi LinearRegression

#1.模型导入
#注意:其他包的导入如Lasso回归
from sklearn.linear_model import LinearRegression # 多元线性回归算法
linear= LinearRegression()
linear.fit(X_train, y_train)
# 预测数据
y_pre_linear = linear.predict(x_test)
print('预测结果:', y_pre_linear)
print('w = ', linear.coef_) # w值
print('b = ', linear.intercept_) # b值
print("训练集得分:{:.2f}".format(linear.score(X_train, y_train)))
print("测试集得分:{:.2f}".format(linear.score(x_test, y_true)))
linear_score = r2_score(y_true, y_pre_linear)
# 绘图
plt.plot(y_true, label='true')
plt.plot(y_pre_linear,'r:', label='linear', )
plt.legend()
plt.show()
# plt.savefig(''F:/新桌面/第三个曲线.jpg')

 

 

 

Logo

为开发者提供学习成长、分享交流、生态实践、资源工具等服务,帮助开发者快速成长。

更多推荐