目录

一、短信登陆:基于Redis实现共享session实现登录 

    1、发送短信验证码

    2、短信验证码登录、注册

    3、校验登陆状态

二、商户查询缓存 

    1、添加Redis缓存

    2、缓存更新策略:

    3、缓存穿透

    4、缓存雪崩

    5、缓存击穿: 

三、优惠券秒杀(Redisson分布式锁解决超卖、一人一单,Stream消息队列实现异步秒杀)

1、全局唯一ID

2、超卖问题

3、基于Redis的分布式锁

4、实现Redisson的分布式锁

5、基于Redis的Stream结构作为消息队列,实现异步秒杀下单 

四、达人探店

1、发布探店笔记(见Feed流)

2、点赞

3、点赞排行榜

五、好友关注

1、关注和取关

2、共同关注

3、关注推送(Feed流)

六、附近的商户

1、GEO数据结构

2、附近商户搜索

七、用户签到

1、BitMap用法

2、签到功能

3、签到统计


完整版项目代码:dazhongdianping: 仿大众点评 (gitee.com)

一、短信登陆:基于Redis实现共享session实现登录 

    1、发送短信验证码

     使用Redis中的String结构,将key:phone,value:code存入Redis

@Override
    public Result sendCode(String phone, HttpSession session) {
        // 1.校验手机号
        if (RegexUtils.isPhoneInvalid(phone)) {
            // 2.如果不符合,返回错误信息
            return Result.fail("手机号格式错误!");
        }
        // 3.符合,生成验证码
        String code = RandomUtil.randomNumbers(6);

        // 4.保存验证码到 session
        stringRedisTemplate.opsForValue().set(LOGIN_CODE_KEY + phone, code, LOGIN_CODE_TTL, TimeUnit.MINUTES);

        // 5.发送验证码
        log.debug("发送短信验证码成功,验证码:{}", code);
        // 返回ok
        return Result.ok();
    }

    2、短信验证码登录、注册

     根据手机手机号查询登录用户,用户存在则将查询的用户存入redis,用户不存在创建用户再存入redis,采用保存登录的用户信息,可以使用String结构,以JSON字符串来保存,比较直观。Hash结构可以将对象中的每个字段独立存储,可以针对单个字段做CRUD,并且内存占用更少。

public Result login(LoginFormDTO loginForm, HttpSession session) {
        // 1.校验手机号
        String phone = loginForm.getPhone();
        if (RegexUtils.isPhoneInvalid(phone)) {
            // 2.如果不符合,返回错误信息
            return Result.fail("手机号格式错误!");
        }
        // 3.从redis获取验证码并校验
        String cacheCode = stringRedisTemplate.opsForValue().get(LOGIN_CODE_KEY + phone);
        String code = loginForm.getCode();
        if (cacheCode == null || !cacheCode.equals(code)) {
            // 不一致,报错
            return Result.fail("验证码错误");
        }

        // 4.一致,根据手机号查询用户 select * from tb_user where phone = ?
        User user = query().eq("phone", phone).one();

        // 5.判断用户是否存在
        if (user == null) {
            // 6.不存在,创建新用户并保存
            user = createUserWithPhone(phone);
        }

        // 7.保存用户信息到 redis中
        // 7.1.随机生成token,作为登录令牌
        String token = UUID.randomUUID().toString(true);
        // 7.2.将User对象转为HashMap存储
        UserDTO userDTO = BeanUtil.copyProperties(user, UserDTO.class);
        Map<String, Object> userMap = BeanUtil.beanToMap(userDTO, new HashMap<>(),
                CopyOptions.create()
                        .setIgnoreNullValue(true)
                        .setFieldValueEditor((fieldName, fieldValue) -> fieldValue.toString()));
        // 7.3.存储
        String tokenKey = LOGIN_USER_KEY + token;
        stringRedisTemplate.opsForHash().putAll(tokenKey, userMap);
        // 7.4.设置token有效期
        stringRedisTemplate.expire(tokenKey, LOGIN_USER_TTL, TimeUnit.MINUTES);

        // 8.返回token
        return Result.ok(token);
    }

    3、校验登陆状态

     为每一个UserDTO创建一个独立线程,使多线程之间资源无法共享。创建二级拦截器,第一级拦截器:1.获取token。2.查询redis用户。3.保存到ThreadLocal,4.刷新token有效期。5.放行。第二级拦截器:1.查询Threadlocal的用户。2.不存在,拦截。3.存在,放行。

UserHolder:

public class UserHolder {
    private static final ThreadLocal<UserDTO> tl = new ThreadLocal<>();
    public static void saveUser(UserDTO user){
        tl.set(user);
    }
    public static UserDTO getUser(){
        return tl.get();
    }
    public static void removeUser(){
        tl.remove();
    }
}

拦截器:

public void addInterceptors(InterceptorRegistry registry) {
        // 登录拦截器
        registry.addInterceptor(new LoginInterceptor())
                .excludePathPatterns(
                        "/shop/**",
                        "/voucher/**",
                        "/shop-type/**",
                        "/upload/**",
                        "/blog/hot",
                        "/user/code",
                        "/user/login"
                ).order(1);
        // token刷新的拦截器
        registry.addInterceptor(new RefreshTokenInterceptor(stringRedisTemplate)).addPathPatterns("/**").order(0);
    }

Redis代替session需要考虑的问题:

  1. 选择合适的数据结构
  2. 选择合适的key
  3. 选择合适的存储粒度

二、商户查询缓存 

    1、添加Redis缓存

    2、缓存更新策略:

内存淘汰

超时剔除

主动更新

说明

不用自己维护,利用Redis的内存淘汰机制,当内存不足时自动淘汰部分数据。下次查询时更新缓存。

给缓存数据添加TTL时间,到期后自动删除缓存。下次查询时更新缓存。

编写业务逻辑,在修改数据库的同时,更新缓存。

一致性

一般

维护成本

    缓存更新策略之主动更新

1. Cache Aside Pattern:由缓存的调用者(程序员),在更新数据库的同时更新缓存

2. Read/Write Through Pattern:缓存与数据库整合为一个服务,由服务来维护一致性。调用者调用该服务,无需关心缓存一致性问题

3. Write Behind Caching Pattern:调用者只操作缓存,由其它线程异步的将缓存数据持久化到数据库,保证最终一致。

    操作缓存和数据库时有三个问题需要考虑:

1.  删除缓存还是更新缓存?
  • 更新缓存:每次更新数据库都更新缓存,无效写操作较多
  • 删除缓存:更新数据库时让缓存失效,查询时再更新缓存
2.  如何保证缓存与数据库的操作的同时成功或失败?
  • 单体系统,将缓存与数据库操作放在一个事务
  • 分布式系统,利用TCC等分布式事务方案

    缓存更新策略的最佳实践方案:

  1. 低一致性需求:使用Redis自带的内存淘汰机制
  2. 高一致性需求:主动更新,并以超时剔除作为兜底方案
读操作:
  • 缓存命中则直接返回
  • 缓存未命中则查询数据库,并写入缓存,设定超时时间
写操作:
  • 先写数据库,然后再删除缓存
  • 要确保数据库与缓存操作的原子性 

    3、缓存穿透

缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在,这样缓存永远不会生效,这些请求都会打到数据库。

常见的解决方案有两种:

优点缺点
缓存空对象实现简单,维护方便

额外内存消耗

可能造成短期不一致

布隆过滤内存占用较少,没有多余key

实现复杂

存在误判可能

缓存穿透产生的原因是什么?

用户请求的数据在缓存中和数据库中都不存在,不断发起这样的请求,给数据库带来巨大压力

缓存穿透的解决方案有哪些?

  • 缓存null
  • 布隆过滤
  • 增强id的复杂度,避免被猜测id规律
  • 做好数据的基础格式校验
  • 加强用户权限校验
  • 做好热点参数的限流
public <R,ID> R queryWithPassThrough(
            String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit){
        String key = keyPrefix + id;
        // 1.从redis查询商铺缓存
        String json = stringRedisTemplate.opsForValue().get(key);
        // 2.判断是否存在
        if (StrUtil.isNotBlank(json)) {
            // 3.存在,直接返回
            return JSONUtil.toBean(json, type);
        }
        // 判断命中的是否是空值
        if (json != null) {
            // 返回一个错误信息
            return null;
        }
        // 4.不存在,根据id查询数据库
        R r = dbFallback.apply(id);
        // 5.不存在,返回错误
        if (r == null) {
            // 将空值写入redis
            stringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);
            // 返回错误信息
            return null;
        }
        // 6.存在,写入redis
        this.set(key, r, time, unit);
        return r;
    }

    4、缓存雪崩

缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。

解决方案:

  • 给不同的KeyTTL添加随机值
  • 利用Redis集群提高服务的可用性
  • 给缓存业务添加降级限流策略
  • 给业务添加多级缓存

    5、缓存击穿: 

缓存击穿问题也叫热点Key问题,就是一个被高并发访问并且缓存重建业务较复杂key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击。

解决方案:

  • 互斥锁
  • 逻辑过期

解决方案

优点

缺点

互斥锁

没有额外的内存消耗
保证一致性

实现简单
线程需要等待,性能受影响
可能有死锁风险

逻辑过期

线程无需等待,性能较好
不保证一致性
有额外内存消耗
实现复杂

互斥锁解决缓存击穿实现代码:

public <R, ID> R queryWithMutex(
            String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit) {
        String key = keyPrefix + id;
        // 1.从redis查询商铺缓存
        String shopJson = stringRedisTemplate.opsForValue().get(key);
        // 2.判断是否存在
        if (StrUtil.isNotBlank(shopJson)) {
            // 3.存在,直接返回
            return JSONUtil.toBean(shopJson, type);
        }
        // 判断命中的是否是空值
        if (shopJson != null) {
            // 返回一个错误信息
            return null;
        }
        // 4.实现缓存重建
        // 4.1.获取互斥锁
        String lockKey = LOCK_SHOP_KEY + id;
        R r = null;
        try {
            boolean isLock = tryLock(lockKey);
            // 4.2.判断是否获取成功
            if (!isLock) {
                // 4.3.获取锁失败,休眠并重试
                Thread.sleep(50);
                return queryWithMutex(keyPrefix, id, type, dbFallback, time, unit);
            }
            // 4.4.获取锁成功,根据id查询数据库
            r = dbFallback.apply(id);
            // 5.不存在,返回错误
            if (r == null) {
                // 将空值写入redis
                stringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);
                // 返回错误信息
                return null;
            }
            // 6.存在,写入redis
            this.set(key, r, time, unit);
        } catch (InterruptedException e) {
            throw new RuntimeException(e);
        }finally {
            // 7.释放锁
            unlock(lockKey);
        }
        // 8.返回
        return r;
    }

    private boolean tryLock(String key) {
        Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);
        return BooleanUtil.isTrue(flag);
    }

    private void unlock(String key) {
        stringRedisTemplate.delete(key);
    }

逻辑过期解决缓存击穿实现代码:

public <R, ID> R queryWithLogicalExpire(
            String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit) {
        String key = keyPrefix + id;
        // 1.从redis查询商铺缓存
        String json = stringRedisTemplate.opsForValue().get(key);
        // 2.判断是否存在
        if (StrUtil.isBlank(json)) {
            // 3.存在,直接返回
            return null;
        }
        // 4.命中,需要先把json反序列化为对象
        RedisData redisData = JSONUtil.toBean(json, RedisData.class);
        R r = JSONUtil.toBean((JSONObject) redisData.getData(), type);
        LocalDateTime expireTime = redisData.getExpireTime();
        // 5.判断是否过期
        if(expireTime.isAfter(LocalDateTime.now())) {
            // 5.1.未过期,直接返回店铺信息
            return r;
        }
        // 5.2.已过期,需要缓存重建
        // 6.缓存重建
        // 6.1.获取互斥锁
        String lockKey = LOCK_SHOP_KEY + id;
        boolean isLock = tryLock(lockKey);
        // 6.2.判断是否获取锁成功
        if (isLock){
            // 6.3.成功,开启独立线程,实现缓存重建
            CACHE_REBUILD_EXECUTOR.submit(() -> {
                try {
                    // 查询数据库
                    R newR = dbFallback.apply(id);
                    // 重建缓存
                    this.setWithLogicalExpire(key, newR, time, unit);
                } catch (Exception e) {
                    throw new RuntimeException(e);
                }finally {
                    // 释放锁
                    unlock(lockKey);
                }
            });
        }
        // 6.4.返回过期的商铺信息
        return r;
    }

三、优惠券秒杀(Redisson分布式锁解决超卖、一人一单,Stream消息队列实现异步秒杀)

1、全局唯一ID

全局唯一ID生成策略:

  • UUID
  • Redis自增
  • snowflake算法
  • 数据库自增

Redis自增ID策略:

  • 每天一个key,方便统计订单量
  • ID构造是 时间戳 + 计数器

2、超卖问题

超卖问题是典型的多线程安全问题,针对这一问题的常见解决方案就是加锁:

超卖这样的线程安全问题,解决方案有哪些?

1.悲观锁: 添加同步锁,让线程串行执行,认为线程安全问题一定会发生,因此在操作数据之前先获取锁,确保线程串行执行
  • 优点:简单粗暴
  • 缺点:性能一般
  • 实现:SynchronizedLock
2.乐观锁: 不加锁,在更新时判断是否有其它线程在修改。 认为线程安全问题不一定会发生,因此不加锁,只是在更新数据时去判断有没有其它线程对数据做了修改。
  • 优点:性能好
  • 缺点:存在成功率低的问题
  • 实现:版本号法、CAS

3、基于Redis的分布式锁

一人一单问题:通过加锁可以解决在单机情况下的一人一单安全问题,但是在集群模式下就不行了。可采用分布式锁。

分布式锁:

基于Redis的分布式锁实现思路:

  • 利用set nx ex获取锁,并设置过期时间,保存线程标示
  • 释放锁时先判断线程标示是否与自己一致,一致则删除锁

特性:

  • 利用set nx满足互斥性
  • 利用set ex保证故障时锁依然能释放,避免死锁,提高安全
  • 利用Redis集群保证高可用和高并发特性

基于setnx实现的分布式锁存在下面的问题:

  • 不可重入:同一个线程无法多次获取同一把锁
  • 不可重试:获取锁只尝试一次就返回false,没有重试机制
  • 超市释放:锁超时释放虽然可以避免死锁,但如果是业务执行耗时较长,也会导致锁释放,存在安全隐患
  • 主从一致性:如果Redis提供了主从集群,主从同步存在延迟,当主宕机时,如果从并同步主中的锁数据,则会出现锁实现

4、实现Redisson的分布式锁

Redisson是一个在Redis的基础上实现的Java驻内存数据网格(In-Memory Data Grid)。它不仅提供了一系列的分布式的Java常用对象,还提供了许多分布式服务,其中就包含了各种分布式锁的实现。

Redisson可重入锁原理:

Redisson分布式锁原理:

  • 可重入:利用hash结构记录线程id和重入次数
  • 可重试:利用信号量和PubSub功能实现等待、唤醒,获取锁失败的重试机制
  • 超时续约:利用watchDog,每隔一段时间(releaseTime / 3),重置超时时间
  • 主从一致性采用Redis集群主从同步,可解决主从一致性问题

利用Redisson解决创建订单时一人一单问题实现代码

private void createVoucherOrder(VoucherOrder voucherOrder) {
        Long userId = voucherOrder.getUserId();
        Long voucherId = voucherOrder.getVoucherId();
        // 创建锁对象
        RLock redisLock = redissonClient.getLock("lock:order:" + userId);
        // 尝试获取锁
        boolean isLock = redisLock.tryLock();
        // 判断
        if (!isLock) {
            // 获取锁失败,直接返回失败或者重试
            log.error("不允许重复下单!");
            return;
        }

        try {
            // 5.1.查询订单
            int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
            // 5.2.判断是否存在
            if (count > 0) {
                // 用户已经购买过了
                log.error("不允许重复下单!");
                return;
            }

            // 6.扣减库存
            boolean success = seckillVoucherService.update()
                    .setSql("stock = stock - 1") // set stock = stock - 1
                    .eq("voucher_id", voucherId).gt("stock", 0) // where id = ? and stock > 0
                    .update();
            if (!success) {
                // 扣减失败
                log.error("库存不足!");
                return;
            }

            // 7.创建订单
            save(voucherOrder);
        } finally {
            // 释放锁
            redisLock.unlock();
        }
    }

总结:

1)不可重入Redis分布式锁:

  • 原理:利用setnx的互斥性;利用ex避免死锁;释放锁时判断线程标示
  • 缺陷:不可重入、无法重试、锁超时失效

2)可重入的Redis分布式锁:

  • 原理:利用hash结构,记录线程标示和重入次数;利用watchDog延续锁时间;利用信号量控制锁重试等待
  • 缺陷:redis宕机引起锁失效问题

3RedissonmultiLock

  • 原理:多个独立的Redis节点,必须在所有节点都获取重入锁,才算获取锁成功
  • 缺陷:运维成本高、实现复杂 

5、基于RedisStream结构作为消息队列,实现异步秒杀下单 

异步秒杀下单流程图

消息队列Message Queue),字面意思就是存放消息的队列。最简单的消息队列模型包括3个角色:

  • 消息队列:存储和管理消息,也被称为消息代理(Message Broker
  • 生产者:发送消息到消息队列
  • 消费者:从消息队列获取消息并处理消息

 Redis提供了三种不同的方式来实现消息队列:

  • list结构:基于List结构模拟消息队列
  • PubSub:基本的点对点消息模型
  • Stream:比较完善的消息队列模型

List

PubSub

Stream

消息持久化

支持

不支持

支持

阻塞读取

支持

支持

支持

消息堆积处理

受限于内存空间,可以利用多消费者加快处理

受限于消费者缓冲区

受限于队列长度,可以利用消费者组提高消费速度,减少堆积

消息确认机制

不支持

不支持

支持

消息回溯

不支持

不支持

支持

其余优点

利用Redis存储,不受限于JVM内存上限

可以满足消息有序性

采用发布订阅模型,支持多生产、多消费

XREADGROUP:可以多消费者抢消息,加快消费速度,没有消息漏读风险

XREAD:有消息漏读风险

缺点

无法避免消息丢失

只支持单消费者

无法避免消息丢失

消息堆积有上限,超出时数据丢失

基于Stream的消息队列

消费者组(Consumer Group:将多个消费者划分到一个组中,监听同一个队列。具备下列特点:

  •         消息分流:队列中的消息会分流给组内的不同消费者,而不是重复消费,从而加快消息处理的速度
  •         消息标示:消费者组会维护一个标示,记录最后一个被处理的消息,哪怕消费者宕机重启,还会从标示之后读取消息。确保每一个                            消息都会被消费
  •         消息确认:消费者获取消息后,消息处于pending状态,并存入一个pending-list。当处理完成后需要通过XACK来确认消息,标记                              消息为已处理,才会从pending-list移除。

利用Stream结果实现异步秒杀实现代码:(lua+java)

-- 1.参数列表
-- 1.1.优惠券id
local voucherId = ARGV[1]
-- 1.2.用户id
local userId = ARGV[2]
-- 1.3.订单id
local orderId = ARGV[3]

-- 2.数据key
-- 2.1.库存key
local stockKey = 'seckill:stock:' .. voucherId
-- 2.2.订单key
local orderKey = 'seckill:order:' .. voucherId

-- 3.脚本业务
-- 3.1.判断库存是否充足 get stockKey
if(tonumber(redis.call('get', stockKey)) <= 0) then
    -- 3.2.库存不足,返回1
    return 1
end
-- 3.2.判断用户是否下单 SISMEMBER orderKey userId
if(redis.call('sismember', orderKey, userId) == 1) then
    -- 3.3.存在,说明是重复下单,返回2
    return 2
end
-- 3.4.扣库存 incrby stockKey -1
redis.call('incrby', stockKey, -1)
-- 3.5.下单(保存用户)sadd orderKey userId
redis.call('sadd', orderKey, userId)
-- 3.6.发送消息到队列中, XADD stream.orders * k1 v1 k2 v2 ...
redis.call('xadd', 'stream.orders', '*', 'userId', userId, 'voucherId', voucherId, 'id', orderId)
return 0
public Result seckillVoucher(Long voucherId) {
        Long userId = UserHolder.getUser().getId();
        long orderId = redisIdWorker.nextId("order");
        // 1.执行lua脚本
        Long result = stringRedisTemplate.execute(
                SECKILL_SCRIPT,
                Collections.emptyList(),
                voucherId.toString(), userId.toString(), String.valueOf(orderId)
        );
        int r = result.intValue();
        // 2.判断结果是否为0
        if (r != 0) {
            // 2.1.不为0 ,代表没有购买资格
            return Result.fail(r == 1 ? "库存不足" : "不能重复下单");
        }
        // 3.返回订单id
        return Result.ok(orderId);
    }
@PostConstruct
    private void init() {
        SECKILL_ORDER_EXECUTOR.submit(new VoucherOrderHandler());
    }
private class VoucherOrderHandler implements Runnable {

        @Override
        public void run() {
            while (true) {
                try {
                    // 1.获取消息队列中的订单信息 XREADGROUP GROUP g1 c1 COUNT 1 BLOCK 2000 STREAMS s1 >
                    List<MapRecord<String, Object, Object>> list = stringRedisTemplate.opsForStream().read(
                            Consumer.from("g1", "c1"),
                            StreamReadOptions.empty().count(1).block(Duration.ofSeconds(2)),
                            StreamOffset.create("stream.orders", ReadOffset.lastConsumed())
                    );
                    // 2.判断订单信息是否为空
                    if (list == null || list.isEmpty()) {
                        // 如果为null,说明没有消息,继续下一次循环
                        continue;
                    }
                    // 解析数据
                    MapRecord<String, Object, Object> record = list.get(0);
                    Map<Object, Object> value = record.getValue();
                    VoucherOrder voucherOrder = BeanUtil.fillBeanWithMap(value, new VoucherOrder(), true);
                    // 3.创建订单
                    createVoucherOrder(voucherOrder);
                    // 4.确认消息 XACK
                    stringRedisTemplate.opsForStream().acknowledge("s1", "g1", record.getId());
                } catch (Exception e) {
                    log.error("处理订单异常", e);
                    handlePendingList();
                }
            }
        }

        private void handlePendingList() {
            while (true) {
                try {
                    // 1.获取pending-list中的订单信息 XREADGROUP GROUP g1 c1 COUNT 1 BLOCK 2000 STREAMS s1 0
                    List<MapRecord<String, Object, Object>> list = stringRedisTemplate.opsForStream().read(
                            Consumer.from("g1", "c1"),
                            StreamReadOptions.empty().count(1),
                            StreamOffset.create("stream.orders", ReadOffset.from("0"))
                    );
                    // 2.判断订单信息是否为空
                    if (list == null || list.isEmpty()) {
                        // 如果为null,说明没有异常消息,结束循环
                        break;
                    }
                    // 解析数据
                    MapRecord<String, Object, Object> record = list.get(0);
                    Map<Object, Object> value = record.getValue();
                    VoucherOrder voucherOrder = BeanUtil.fillBeanWithMap(value, new VoucherOrder(), true);
                    // 3.创建订单
                    createVoucherOrder(voucherOrder);
                    // 4.确认消息 XACK
                    stringRedisTemplate.opsForStream().acknowledge("s1", "g1", record.getId());
                } catch (Exception e) {
                    log.error("处理订单异常", e);
                }
            }
        }
    }

四、达人探店

1、发布探店笔记(见Feed流)

2、点赞

Redis缓存点赞信息,SortedSet集合

public Result likeBlog(Long id) {
        // 1.获取登录用户
        Long userId = UserHolder.getUser().getId();
        // 2.判断当前登录用户是否已经点赞
        String key = BLOG_LIKED_KEY + id;
        Double score = stringRedisTemplate.opsForZSet().score(key, userId.toString());
        if (score == null) {
            // 3.如果未点赞,可以点赞
            // 3.1.数据库点赞数 + 1
            boolean isSuccess = update().setSql("liked = liked + 1").eq("id", id).update();
            // 3.2.保存用户到Redis的set集合  zadd key value score
            if (isSuccess) {
                stringRedisTemplate.opsForZSet().add(key, userId.toString(), System.currentTimeMillis());
            }
        } else {
            // 4.如果已点赞,取消点赞
            // 4.1.数据库点赞数 -1
            boolean isSuccess = update().setSql("liked = liked - 1").eq("id", id).update();
            // 4.2.把用户从Redis的set集合移除
            if (isSuccess) {
                stringRedisTemplate.opsForZSet().remove(key, userId.toString());
            }
        }
        return Result.ok();
    }

3、点赞排行榜

获取Top5点赞用户

public Result queryBlogLikes(Long id) {
        String key = BLOG_LIKED_KEY + id;
        // 1.查询top5的点赞用户 zrange key 0 4
        Set<String> top5 = stringRedisTemplate.opsForZSet().range(key, 0, 4);
        if (top5 == null || top5.isEmpty()) {
            return Result.ok(Collections.emptyList());
        }
        // 2.解析出其中的用户id
        List<Long> ids = top5.stream().map(Long::valueOf).collect(Collectors.toList());
        String idStr = StrUtil.join(",", ids);
        // 3.根据用户id查询用户 WHERE id IN ( 5 , 1 ) ORDER BY FIELD(id, 5, 1)
        List<UserDTO> userDTOS = userService.query()
                .in("id", ids).last("ORDER BY FIELD(id," + idStr + ")").list()
                .stream()
                .map(user -> BeanUtil.copyProperties(user, UserDTO.class))
                .collect(Collectors.toList());
        // 4.返回
        return Result.ok(userDTOS);
    }

五、好友关注

1、关注和取关

实现代码

public Result follow(Long followUserId, Boolean isFollow) {
        // 1.获取登录用户
        Long userId = UserHolder.getUser().getId();
        String key = "follows:" + userId;
        // 1.判断到底是关注还是取关
        if (isFollow) {
            // 2.关注,新增数据
            Follow follow = new Follow();
            follow.setUserId(userId);
            follow.setFollowUserId(followUserId);
            boolean isSuccess = save(follow);
            if (isSuccess) {
                // 把关注用户的id,放入redis的set集合 sadd userId followerUserId
                stringRedisTemplate.opsForSet().add(key, followUserId.toString());
            }
        } else {
            // 3.取关,删除 delete from tb_follow where user_id = ? and follow_user_id = ?
            boolean isSuccess = remove(new QueryWrapper<Follow>()
                    .eq("user_id", userId).eq("follow_user_id", followUserId));
            if (isSuccess) {
                // 把关注用户的id从Redis集合中移除
                stringRedisTemplate.opsForSet().remove(key, followUserId.toString());
            }
        }
        return Result.ok();
    }


    public Result isFollow(Long followUserId) {
        // 1.获取登录用户
        Long userId = UserHolder.getUser().getId();
        // 2.查询是否关注 select count(*) from tb_follow where user_id = ? and follow_user_id = ?
        Integer count = query().eq("user_id", userId).eq("follow_user_id", followUserId).count();
        // 3.判断
        return Result.ok(count > 0);
    }

2、共同关注

Set集合的交集功能实现代码

public Result followCommons(Long id) {
        // 1.获取当前用户
        Long userId = UserHolder.getUser().getId();
        String key = "follows:" + userId;
        // 2.求交集
        String key2 = "follows:" + id;
        Set<String> intersect = stringRedisTemplate.opsForSet().intersect(key, key2);
        if (intersect == null || intersect.isEmpty()) {
            // 无交集
            return Result.ok(Collections.emptyList());
        }
        // 3.解析id集合
        List<Long> ids = intersect.stream().map(Long::valueOf).collect(Collectors.toList());
        // 4.查询用户
        List<UserDTO> users = userService.listByIds(ids)
                .stream()
                .map(user -> BeanUtil.copyProperties(user, UserDTO.class))
                .collect(Collectors.toList());
        return Result.ok(users);
    }

3、关注推送(Feed流)

Feed流产品有两种常见模式:

Timeline :不做内容筛选,简单的按照内容发布时间排序,常用于好友或关注。例如朋友圈
  • 优点:信息全面,不会有缺失。并且实现也相对简单
  • 缺点:信息噪音较多,用户不一定感兴趣,内容获取效率低
智能排序 :利用智能算法屏蔽掉违规的、用户不感兴趣的内容。推送用户感兴趣信息来吸引用户
  • 优点:投喂用户感兴趣信息,用户粘度很高,容易沉迷
  • 缺点:如果算法不精准,可能起到反作用

本例中的个人页面,是基于关注的好友来做Feed流,因此采用Timeline的模式。该模式的实现方案有三种:

  • 推模式(也叫写扩散):和名字一样,就是一种推的方式,发送者发送了一个消息后,立即将这个消息推送给接收者,但是接收者此时不一定在线,那么就需要有一个地方存储这个数据,这个存储的地方我们称为:同步库。推模式也叫写扩散的原因是,一个消息需要发送个多个粉丝,那么这条消息就会复制多份,写放大,所以也叫写扩散。这种模式下,对同步库的要求就是写入能力极强和稳定。读取的时候因为消息已经发到接收者的收件箱了,只需要读一次自己的收件箱即可,读请求的量极小,所以对读的QPS需求不大。归纳下,推模式中对同步库的要求只有一个:写入能力强。

  • 拉模式(也叫读扩散):这种是一种拉的方式,发送者发送了一条消息后,这条消息不会立即推送给粉丝,而是写入自己的发件箱,当粉丝上线后再去自己关注者的发件箱里面去读取,一条消息的写入只有一次,但是读取最多会和粉丝数一样,读会放大,所以也叫读扩散。拉模式的读写比例刚好和写扩散相反,那么对系统的要求是:读取能力强。另外这里还有一个误区,很多人在最开始设计feed流系统时,首先想到的是拉模式,因为这种和用户的使用体感是一样的,但是在系统设计上这种方式有不少痛点,最大的是每个粉丝需要记录自己上次读到了关注者的哪条消息,如果有1000个关注者,那么这个人需要记录1000个位置信息,这个量和关注量成正比的,远比用户数要大的多,这里要特别注意,虽然在产品前期数据量少的时候这种方式可以应付,但是量大了后就会事倍功半,得不偿失,切记切记。

  • 推拉结合模式:推模式在单向关系中,因为存在大V,那么一条消息可能会扩散几百万次,但是这些用户中可能有一半多是僵尸,永远不会上线,那么就存在资源浪费。而拉模式下,在系统架构上会很复杂,同时需要记录的位置信息是天量,不好解决,尤其是用户量多了后会成为第一个故障点。基于此,所以有了推拉结合模式,大部分用户的消息都是写扩散,只有大V是读扩散,这样既控制了资源浪费,又减少了系统设计复杂度。但是整体设计复杂度还是要比推模式复杂。

归纳如下:

  • 如果产品中是双向关系,那么就采用推模式。

  • 如果产品中是单向关系,且用户数少于1000万,那么也采用推模式,足够了。

  • 如果产品是单向关系,单用户数大于1000万,那么采用推拉结合模式,这时候可以从推模式演进过来,不需要额外重新推翻重做。

  • 永远不要只用拉模式。

  • 如果是一个初创企业,先用推模式,快速把系统设计出来,然后让产品去验证、迭代,等客户数大幅上涨到1000万后,再考虑升级为推拉集合模式。

拉模式

推模式

推拉结合

写比例

读比例

用户读取延迟

实现难度

复杂

简单

很复杂

使用场景

很少使用

用户量少、没有大V

过千万的用户量,有大V

本项目采用推模式:用SortedSet保存博客id,以及时间戳推送给粉丝收件箱实现代码

public Result saveBlog(Blog blog) {
        // 1.获取登录用户
        UserDTO user = UserHolder.getUser();
        blog.setUserId(user.getId());
        // 2.保存探店笔记
        boolean isSuccess = save(blog);
        if(!isSuccess){
            return Result.fail("新增笔记失败!");
        }
        // 3.查询笔记作者的所有粉丝 select * from tb_follow where follow_user_id = ?
        List<Follow> follows = followService.query().eq("follow_user_id", user.getId()).list();
        // 4.推送笔记id给所有粉丝
        for (Follow follow : follows) {
            // 4.1.获取粉丝id
            Long userId = follow.getUserId();
            // 4.2.推送
            String key = FEED_KEY + userId;
            stringRedisTemplate.opsForZSet().add(key, blog.getId().toString(), System.currentTimeMillis());
        }
        // 5.返回id
        return Result.ok(blog.getId());
    }

 粉丝收件箱接收实现代码

public Result queryBlogOfFollow(Long max, Integer offset) {
        // 1.获取当前用户
        Long userId = UserHolder.getUser().getId();
        // 2.查询收件箱 ZREVRANGEBYSCORE key Max Min LIMIT offset count
        String key = FEED_KEY + userId;
        Set<ZSetOperations.TypedTuple<String>> typedTuples = stringRedisTemplate.opsForZSet()
                .reverseRangeByScoreWithScores(key, 0, max, offset, 2);
        // 3.非空判断
        if (typedTuples == null || typedTuples.isEmpty()) {
            return Result.ok();
        }
        // 4.解析数据:blogId、minTime(时间戳)、offset
        List<Long> ids = new ArrayList<>(typedTuples.size());
        long minTime = 0; // 2
        int os = 1; // 2
        for (ZSetOperations.TypedTuple<String> tuple : typedTuples) { // 5 4 4 2 2
            // 4.1.获取id
            ids.add(Long.valueOf(tuple.getValue()));
            // 4.2.获取分数(时间戳)
            long time = tuple.getScore().longValue();
            if(time == minTime){
                os++;
            }else{
                minTime = time;
                os = 1;
            }
        }

        // 5.根据id查询blog
        String idStr = StrUtil.join(",", ids);
        List<Blog> blogs = query().in("id", ids).last("ORDER BY FIELD(id," + idStr + ")").list();
        for (Blog blog : blogs) {
            // 5.1.查询blog有关的用户
            queryBlogUser(blog);
            // 5.2.查询blog是否被点赞
            isBlogLiked(blog);
        }

        // 6.封装并返回
        ScrollResult r = new ScrollResult();
        r.setList(blogs);
        r.setOffset(os);
        r.setMinTime(minTime);

        return Result.ok(r);
    }

六、附近的商户

1、GEO数据结构

GEO就是Geolocation的简写形式,代表地理坐标。Redis3.2版本中加入了对GEO的支持,允许存储地理坐标信息,帮助我们根据经纬度来检索数据。常见的命令有:

GEOADD:添加一个地理空间信息,包含:经度(longitude)、纬度(latitude)、值(member

GEODIST计算指定的两个点之间的距离并返回

GEOHASH:将指定member的坐标转为hash字符串形式并返回

GEOPOS:返回指定member的坐标

GEORADIUS:指定圆心、半径,找到该圆内包含的所有member,并按照与圆心之间的距离排序后返回。6.2以后已废弃

GEOSEARCH:在指定范围内搜索member,并按照与指定点之间的距离排序后返回。范围可以是圆形或矩形。6.2.新功能

GEOSEARCHSTORE:与GEOSEARCH功能一致,不过可以把结果存储到一个指定的key 6.2.新功能

2、附近商户搜索

按照商户类型做分组,类型相同的商户作为同一组,以typeIdkey存入同一个GEO集合中即可

public Result queryShopByType(Integer typeId, Integer current, Double x, Double y) {
        // 1.判断是否需要根据坐标查询
        if (x == null || y == null) {
            // 不需要坐标查询,按数据库查询
            Page<Shop> page = query()
                    .eq("type_id", typeId)
                    .page(new Page<>(current, SystemConstants.DEFAULT_PAGE_SIZE));
            // 返回数据
            return Result.ok(page.getRecords());
        }

        // 2.计算分页参数
        int from = (current - 1) * SystemConstants.DEFAULT_PAGE_SIZE;
        int end = current * SystemConstants.DEFAULT_PAGE_SIZE;

        // 3.查询redis、按照距离排序、分页。结果:shopId、distance
        String key = SHOP_GEO_KEY + typeId;
        GeoResults<RedisGeoCommands.GeoLocation<String>> results = stringRedisTemplate.opsForGeo() // GEOSEARCH key BYLONLAT x y BYRADIUS 10 WITHDISTANCE
                .search(
                        key,
                        GeoReference.fromCoordinate(x, y),
                        new Distance(5000),
                        RedisGeoCommands.GeoSearchCommandArgs.newGeoSearchArgs().includeDistance().limit(end)
                );
        // 4.解析出id
        if (results == null) {
            return Result.ok(Collections.emptyList());
        }
        List<GeoResult<RedisGeoCommands.GeoLocation<String>>> list = results.getContent();
        if (list.size() <= from) {
            // 没有下一页了,结束
            return Result.ok(Collections.emptyList());
        }
        // 4.1.截取 from ~ end的部分
        List<Long> ids = new ArrayList<>(list.size());
        Map<String, Distance> distanceMap = new HashMap<>(list.size());
        list.stream().skip(from).forEach(result -> {
            // 4.2.获取店铺id
            String shopIdStr = result.getContent().getName();
            ids.add(Long.valueOf(shopIdStr));
            // 4.3.获取距离
            Distance distance = result.getDistance();
            distanceMap.put(shopIdStr, distance);
        });
        // 5.根据id查询Shop
        String idStr = StrUtil.join(",", ids);
        List<Shop> shops = query().in("id", ids).last("ORDER BY FIELD(id," + idStr + ")").list();
        for (Shop shop : shops) {
            shop.setDistance(distanceMap.get(shop.getId().toString()).getValue());
        }
        // 6.返回
        return Result.ok(shops);
    }

七、用户签到

1、BitMap用法

Redis是利用string类型数据结构实现BitMap因此最大上限是512M,转换为bit则是 2^32bit位。

BitMap的操作命令有:

SETBIT:向指定位置(offset)存入一个01

GETBIT :获取指定位置(offset)的bit

BITCOUNT :统计BitMap中值为1bit位的数量

BITFIELD :操作(查询、修改、自增)BitMapbit数组中的指定位置(offset)的值

2、签到功能

实现代码:

public Result sign() {
        // 1.获取当前登录用户
        Long userId = UserHolder.getUser().getId();
        // 2.获取日期
        LocalDateTime now = LocalDateTime.now();
        // 3.拼接key
        String keySuffix = now.format(DateTimeFormatter.ofPattern(":yyyyMM"));
        String key = USER_SIGN_KEY + userId + keySuffix;
        // 4.获取今天是本月的第几天
        int dayOfMonth = now.getDayOfMonth();
        // 5.写入Redis SETBIT key offset 1
        stringRedisTemplate.opsForValue().setBit(key, dayOfMonth - 1, true);
        return Result.ok();
    }

3、签到统计

实现代码:

public Result signCount() {
        // 1.获取当前登录用户
        Long userId = UserHolder.getUser().getId();
        // 2.获取日期
        LocalDateTime now = LocalDateTime.now();
        // 3.拼接key
        String keySuffix = now.format(DateTimeFormatter.ofPattern(":yyyyMM"));
        String key = USER_SIGN_KEY + userId + keySuffix;
        // 4.获取今天是本月的第几天
        int dayOfMonth = now.getDayOfMonth();
        // 5.获取本月截止今天为止的所有的签到记录,返回的是一个十进制的数字 BITFIELD sign:5:202203 GET u14 0
        List<Long> result = stringRedisTemplate.opsForValue().bitField(
                key,
                BitFieldSubCommands.create()
                        .get(BitFieldSubCommands.BitFieldType.unsigned(dayOfMonth)).valueAt(0)
        );
        if (result == null || result.isEmpty()) {
            // 没有任何签到结果
            return Result.ok(0);
        }
        Long num = result.get(0);
        if (num == null || num == 0) {
            return Result.ok(0);
        }
        // 6.循环遍历
        int count = 0;
        while (true) {
            // 6.1.让这个数字与1做与运算,得到数字的最后一个bit位  // 判断这个bit位是否为0
            if ((num & 1) == 0) {
                // 如果为0,说明未签到,结束
                break;
            }else {
                // 如果不为0,说明已签到,计数器+1
                count++;
            }
            // 把数字右移一位,抛弃最后一个bit位,继续下一个bit位
            num >>>= 1;
        }
        return Result.ok(count);
    }

Logo

为开发者提供学习成长、分享交流、生态实践、资源工具等服务,帮助开发者快速成长。

更多推荐